Skip to main content

Modeling Cancer Using Genetically Engineered Mice

  • Protocol
  • First Online:
Book cover Mouse Models of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1267))

Abstract

Genetically engineered mouse (GEM) models have proven to be a powerful tool to study tumorigenesis. The mouse is the preferred complex organism used in cancer studies due to the high number and versatility of genetic tools available for this species. GEM models can mimic point mutations, gene amplifications, short and large deletions, translocations, etc.; thus, most of the genetic aberrations found in human tumors can be modeled in GEM, making GEM models a very attractive system. Furthermore, recent developments in mouse genetics may facilitate the generation of GEM models with increased mutational complexity, therefore resembling human tumors better. Within this review, we will discuss the different possibilities of modeling tumorigenesis using GEM and the future developments within the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366):215–221. doi:10.1038/356215a0

    Article  CAS  PubMed  Google Scholar 

  2. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96(4):1563–1568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6(1):7–28

    Article  CAS  PubMed  Google Scholar 

  4. Tronche F, Casanova E, Turiault M, Sahly I, Kellendonk C (2002) When reverse genetics meets physiology: the use of site-specific recombinases in mice. FEBS Lett 529(1):116–121

    Article  CAS  PubMed  Google Scholar 

  5. Schaft J, Ashery-Padan R, van der Hoeven F, Gruss P, Stewart AF (2001) Efficient FLP recombination in mouse ES cells and oocytes. Genesis 31(1):6–10

    Article  CAS  PubMed  Google Scholar 

  6. Anastassiadis K, Fu J, Patsch C, Hu S, Weidlich S, Duerschke K, Buchholz F, Edenhofer F, Stewart AF (2009) Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2(9–10):508–515. doi:10.1242/dmm.003087

    Article  CAS  PubMed  Google Scholar 

  7. Sangiorgi E, Shuhua Z, Capecchi MR (2008) In vivo evaluation of PhiC31 recombinase activity using a self-excision cassette. Nucleic Acids Res 36(20):e134. doi:10.1093/nar/gkn627

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ, Sangiorgi FO, Maxson RE, Sucov HM, Roy-Burman P (2001) Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 101(1–2):61–69

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, Kimura Y, Yoshida R, Wakeham A, Higuchi T, Fukumoto M, Tsubata T, Ohashi PS, Koyasu S, Penninger JM, Nakano T, Mak TW (2001) T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14(5):523–534

    Article  CAS  PubMed  Google Scholar 

  10. Kellendonk C, Opherk C, Anlag K, Schutz G, Tronche F (2000) Hepatocyte-specific expression of Cre recombinase. Genesis 26(2):151–153

    Article  CAS  PubMed  Google Scholar 

  11. Eferl R, Ricci R, Kenner L, Zenz R, David JP, Rath M, Wagner EF (2003) Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 112(2):181–192

    Article  CAS  PubMed  Google Scholar 

  12. Silver DP, Livingston DM (2001) Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol Cell 8(1):233–243

    Article  CAS  PubMed  Google Scholar 

  13. Adams DJ, van der Weyden L (2001) Are we creating problems? Negative effects of Cre recombinase. Genesis 29(3):115

    Article  CAS  PubMed  Google Scholar 

  14. Harno E, Cottrell EC, White A (2013) Metabolic pitfalls of CNS cre-based technology. Cell Metab 18(1):21–28. doi:10.1016/j.cmet.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  15. Magnuson MA, Osipovich AB (2013) Pancreas-specific cre driver lines and considerations for their prudent use. Cell Metab 18(1):9–20. doi:10.1016/j.cmet.2013.06.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93(20):10887–10890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kellendonk C, Tronche F, Casanova E, Anlag K, Opherk C, Schutz G (1999) Inducible site-specific recombination in the brain. J Mol Biol 285(1):175–182. doi:10.1006/jmbi.1998.2307

    Article  CAS  PubMed  Google Scholar 

  18. Casanova E, Fehsenfeld S, Lemberger T, Shimshek DR, Sprengel R, Mantamadiotis T (2002) ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis 34(3):208–214. doi:10.1002/Gene.10153

    Article  CAS  PubMed  Google Scholar 

  19. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237(3):752–757. doi:10.1006/bbrc.1997.7124

    Article  CAS  PubMed  Google Scholar 

  20. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15(24):3243–3248. doi:10.1101/gad.943001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M, Campuzano V, Barbacid M (2003) Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4(2):111–120

    Article  CAS  PubMed  Google Scholar 

  22. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4(6):437–450

    Article  CAS  PubMed  Google Scholar 

  23. DuPage M, Dooley AL, Jacks T (2009) Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4(7):1064–1072. doi:10.1038/nprot.2009.95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM (1988) The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 167(2):353–371

    Article  CAS  PubMed  Google Scholar 

  25. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318(6046):533–538

    Article  CAS  PubMed  Google Scholar 

  26. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71. doi:10.1038/5007

    Article  CAS  PubMed  Google Scholar 

  27. Belgardt BF, Husch A, Rother E, Ernst MB, Wunderlich FT, Hampel B, Klockener T, Alessi D, Kloppenburg P, Bruning JC (2008) PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metab 7(4):291–301. doi:10.1016/j.cmet.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  28. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99–109

    Article  CAS  PubMed  Google Scholar 

  29. Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, Akyol A, Hanash S, Misek DE, Katabuchi H, Williams BO, Fearon ER, Cho KR (2007) Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell 11(4):321–333. doi:10.1016/j.ccr.2007.02.016

    Article  CAS  PubMed  Google Scholar 

  30. Xia Y, Yeddula N, Leblanc M, Ke E, Zhang Y, Oldfield E, Shaw RJ, Verma IM (2012) Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model. Nat Cell Biol 14(3):257–265. doi:10.1038/ncb2428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M, Jacks T (2005) The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 65(22):10280–10288. doi:10.1158/0008-5472.CAN-05-2193

    Article  CAS  PubMed  Google Scholar 

  32. Musteanu M, Blaas L, Zenz R, Svinka J, Hoffmann T, Grabner B, Schramek D, Kantner HP, Muller M, Kolbe T, Rulicke T, Moriggl R, Kenner L, Stoiber D, Penninger JM, Popper H, Casanova E, Eferl R (2012) A mouse model to identify cooperating signaling pathways in cancer. Nat Methods 9(9):897–+. doi: 10.1038/Nmeth.2130

  33. Miller AJ, Dudley SD, Tsao JL, Shibata D, Liskay RM (2008) Tractable Cre-lox system for stochastic alteration of genes in mice. Nat Methods 5(3):227–229. doi:10.1038/nmeth.1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wang W, Warren M, Bradley A (2007) Induced mitotic recombination of p53 in vivo. Proc Natl Acad Sci U S A 104(11):4501–4505. doi:10.1073/pnas.0607953104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  36. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  37. Young NP, Crowley D, Jacks T (2011) Uncoupling cancer mutations reveals critical timing of p53 loss in sarcomagenesis. Cancer Res 71(11):4040–4047. doi:10.1158/0008-5472.CAN-10-4563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hameyer D, Loonstra A, Eshkind L, Schmitt S, Antunes C, Groen A, Bindels E, Jonkers J, Krimpenfort P, Meuwissen R, Rijswijk L, Bex A, Berns A, Bockamp E (2007) Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues. Physiol Genomics 31(1):32–41. doi:10.1152/physiolgenomics.00019.2007

    Article  CAS  PubMed  Google Scholar 

  39. Lee CL, Moding EJ, Huang X, Li Y, Woodlief LZ, Rodrigues RC, Ma Y, Kirsch DG (2012) Generation of primary tumors with Flp recombinase in FRT-flanked p53 mice. Dis Model Mech 5(3):397–402. doi:10.1242/dmm.009084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8(4):265–277

    Article  CAS  PubMed  Google Scholar 

  41. Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68(9):3077–3080. doi:10.1158/0008-5472.CAN-07-3293, Discussion 3080

    Article  CAS  PubMed  Google Scholar 

  42. Sun Y, Chen X, Xiao D (2007) Tetracycline-inducible expression systems: new strategies and practices in the transgenic mouse modeling. Acta Biochim Biophys Sin 39(4):235–246

    Article  CAS  PubMed  Google Scholar 

  43. D’Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, Belka GK, Golant A, Cardiff RD, Chodosh LA (2001) c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7(2):235–239. doi:10.1038/84691

    Article  PubMed  Google Scholar 

  44. Nguyen N, Judd LM, Kalantzis A, Whittle B, Giraud AS, van Driel IR (2011) Random mutagenesis of the mouse genome: a strategy for discovering gene function and the molecular basis of disease. Am J Physiol Gastrointest Liver Physiol 300(1):G1–G11. doi:10.1152/ajpgi.00343.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247(4940):322–324

    Article  CAS  PubMed  Google Scholar 

  46. Jonkers J, Berns A (1996) Retroviral insertional mutagenesis as a strategy to identify cancer genes. Biochim Biophys Acta 1287(1):29–57

    PubMed  Google Scholar 

  47. Collier LS, Largaespada DA (2007) Transposons for cancer gene discovery: sleeping beauty and beyond. Genome Biol 8(Suppl 1):S15. doi:10.1186/gb-2007-8-s1-s15

    Article  PubMed Central  PubMed  Google Scholar 

  48. Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos LS, Yusa K, Banerjee R, Li MA, de la Rosa J, Strong A, Lu D, Ellis P, Conte N, Yang FT, Liu P, Bradley A (2010) PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330(6007):1104–1107. doi:10.1126/science.1193004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Starr TK, Allaei R, Silverstein KA, Staggs RA, Sarver AL, Bergemann TL, Gupta M, O'Sullivan MG, Matise I, Dupuy AJ, Collier LS, Powers S, Oberg AL, Asmann YW, Thibodeau SN, Tessarollo L, Copeland NG, Jenkins NA, Cormier RT, Largaespada DA (2009) A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323(5922):1747–1750. doi:10.1126/science.1163040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Beronja S, Janki P, Heller E, Lien WH, Keyes BE, Oshimori N, Fuchs E (2013) RNAi screens in mice identify physiological regulators of oncogenic growth. Nature 501(7466):185–190. doi:10.1038/nature12464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, Joyner A, Koller BH, Lloyd KC, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, Stewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B (2004) The knockout mouse project. Nat Genet 36(9):921–924. doi:10.1038/ng0904-921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Auwerx J, Avner P, Baldock R, Ballabio A, Balling R, Barbacid M, Berns A, Bradley A, Brown S, Carmeliet P, Chambon P, Cox R, Davidson D, Davies K, Duboule D, Forejt J, Granucci F, Hastie N, de Angelis MH, Jackson I, Kioussis D, Kollias G, Lathrop M, Lendahl U, Malumbres M, von Melchner H, Muller W, Partanen J, Ricciardi-Castagnoli P, Rigby P, Rosen B, Rosenthal N, Skarnes B, Stewart AF, Thornton J, Tocchini-Valentini G, Wagner E, Wahli W, Wurst W (2004) The European dimension for the mouse genome mutagenesis program. Nat Genet 36(9):925–927. doi:10.1038/ng0904-925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Bradley A, Anastassiadis K, Ayadi A, Battey JF, Bell C, Birling MC, Bottomley J, Brown SD, Burger A, Bult CJ, Bushell W, Collins FS, Desaintes C, Doe B, Economides A, Eppig JT, Finnell RH, Fletcher C, Fray M, Frendewey D, Friedel RH, Grosveld FG, Hansen J, Herault Y, Hicks G, Horlein A, Houghton R, Hrabe de Angelis M, Huylebroeck D, Iyer V, de Jong PJ, Kadin JA, Kaloff C, Kennedy K, Koutsourakis M, Lloyd KC, Marschall S, Mason J, McKerlie C, McLeod MP, von Melchner H, Moore M, Mujica AO, Nagy A, Nefedov M, Nutter LM, Pavlovic G, Peterson JL, Pollock J, Ramirez-Solis R, Rancourt DE, Raspa M, Remacle JE, Ringwald M, Rosen B, Rosenthal N, Rossant J, Ruiz Noppinger P, Ryder E, Schick JZ, Schnutgen F, Schofield P, Seisenberger C, Selloum M, Simpson EM, Skarnes WC, Smedley D, Stanford WL, Stewart AF, Stone K, Swan K, Tadepally H, Teboul L, Tocchini-Valentini GP, Valenzuela D, West AP, Yamamura K, Yoshinaga Y, Wurst W (2012) The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 23(9–10):580–586. doi:10.1007/s00335-012-9422-2

    Article  PubMed Central  PubMed  Google Scholar 

  54. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (2013) Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154(2):452–464. doi:10.1016/j.cell.2013.06.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342. doi:10.1038/nature10163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Rampetsreiter P, Casanova E, Eferl R (2011) Genetically modified mouse models of cancer invasion and metastasis. Drug Discov Today Dis Models 8(2–3):67–74. doi:10.1016/j.ddmod.2011.05.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558. doi:10.1126/science.1235122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641. doi:10.1038/msb.2012.66

    Article  PubMed Central  PubMed  Google Scholar 

  59. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. doi:10.1016/j.cell.2013.04.025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Huijbers IJ, Bin Ali R, Pritchard C, Cozijnsen M, Kwon MC, Proost N, Song JY, de Vries H, Badhai J, Sutherland K, Krimpenfort P, Michalak EM, Jonkers J, Berns A (2014) Rapid target gene validation in complex cancer mouse models using re-derived embryonic stem cells. EMBO Mol Med 6(2):212–225. doi:10.1002/emmm.201303297

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Seibler J, Zevnik B, Kuter-Luks B, Andreas S, Kern H, Hennek T, Rode A, Heimann C, Faust N, Kauselmann G, Schoor M, Jaenisch R, Rajewsky K, Kuhn R, Schwenk F (2003) Rapid generation of inducible mouse mutants. Nucleic Acids Res 31(4):e12

    Article  PubMed Central  PubMed  Google Scholar 

  62. Editorial (2010) Rats! Nat methods 7(6):413

    Google Scholar 

  63. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512

    Article  CAS  PubMed  Google Scholar 

  64. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135(7):1287–1298. doi:10.1016/j.cell.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  65. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135(7):1299–1310. doi:10.1016/j.cell.2008.12.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Tong C, Li P, Wu NL, Yan Y, Ying QL (2010) Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467(7312):211–213. doi:10.1038/nature09368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433. doi:10.1126/science.1172447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695–696. doi:10.1038/nbt.1940

    Article  CAS  PubMed  Google Scholar 

  69. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31(8):681–683. doi:10.1038/nbt.2661

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Dagmar Stoiber-Sakaguchi and Robert Eferl for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Casanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stiedl, P., Grabner, B., Zboray, K., Bogner, E., Casanova, E. (2015). Modeling Cancer Using Genetically Engineered Mice. In: Eferl, R., Casanova, E. (eds) Mouse Models of Cancer. Methods in Molecular Biology, vol 1267. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2297-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2297-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2296-3

  • Online ISBN: 978-1-4939-2297-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics