Skip to main content

Bridging the Gap Between Nature and Antioxidant Setbacks: Delivering Caffeic Acid to Mitochondria

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1265))

Abstract

As mitochondria have an important role as ATP supplier, cellular ROS producer and apoptosis regulator, these organelles are a promising target for pharmacological intervention in the treatment and management of several diseases. Consequently, research on mitochondria-targeted drugs, which exclude other intracellular structures or extracellular processes, is becoming a hot topic. One approach to address the specific targeting is to conjugate bioactive molecules to a lipophilic cation such as the triphenylphosphonium (TPP+). In this chapter, the development of a new antioxidant based on the dietary cinnamic acid—caffeic acid—is described as well as the demonstration of its mitochondriotropic activity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yang CS, Landau JM, Huang MT et al (2001) Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 21:381–406

    Article  CAS  PubMed  Google Scholar 

  2. Esteves M, Siquet C, Gaspar A et al (2008) Antioxidant versus cytotoxic properties of hydroxycinnamic acid derivatives—a new paradigm in phenolic research. Arch Pharm 341:164–173

    Article  CAS  Google Scholar 

  3. Menezes JC, Kamat SP, Cavaleiro JA et al (2011) Synthesis and antioxidant activity of long chain alkyl hydroxycinnamates. Eur J Med Chem 46:773–777

    Article  CAS  PubMed  Google Scholar 

  4. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  PubMed  Google Scholar 

  5. Smith RAJ, Hartley RC, Murphy MP (2011) Mitochondria-targeted small molecule therapeutics and probes. Antioxid Redox Signal 15:3021–3038

    Article  CAS  PubMed  Google Scholar 

  6. Teixeira J, Soares P, Benfeito S et al (2012) Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold. Free Radic Res 46:600–611

    Article  CAS  PubMed  Google Scholar 

  7. Bernardi P, Scorrano L, Colonna R et al (1999) Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 264:687–701

    Article  CAS  PubMed  Google Scholar 

  8. Bonda D, Wang X, Gustaw-Rothenberg K et al (2009) Mitochondrial drugs for Alzheimer disease. Pharmaceuticals 2:287–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Petersen RB, Nunomura A, Lee HG et al (2007) Signal transduction cascades associated with oxidative stress in Alzheimer’s disease. J Alzheimers Dis 11:143–152

    CAS  PubMed  Google Scholar 

  10. Brookes PS, Yoon Y, Robotham JL et al (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  CAS  PubMed  Google Scholar 

  11. Manash PK, Rajan TK, Anup MK (2006) Mitochondria—role in different diseases: potential for drug development. CRIPS 7:42–46

    Google Scholar 

  12. Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54:101–127

    Article  CAS  PubMed  Google Scholar 

  13. Prescott DM (1975) Methods in cell biology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  14. Oliveira PJ (2011) Mitochondria as a drug target in health and disease. Curr Drug Targets 12:761

    Article  CAS  PubMed  Google Scholar 

  15. Dessolin J, Schuler M, Quinart A et al (2002) Selective targeting of synthetic antioxidants to mitochondria: towards a mitochondrial medicine for neurodegenerative diseases? Eur J Pharmacol 447:155–161

    Article  CAS  PubMed  Google Scholar 

  16. Skulachev VP (2005) How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers. IUBMB Life 57:305–310

    Article  CAS  PubMed  Google Scholar 

  17. Smith RAJ, Porteous CM, Gane AM et al (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100:5407–5412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mitchell P, Moyle J (1969) Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem 7:471–484

    Article  CAS  PubMed  Google Scholar 

  19. Azzone GF, Petronilli V, Zoratti M (1984) ‘Cross-talk’ between redox- and ATP-driven H+ pumps. Biochem Soc Trans 12:414–416

    CAS  PubMed  Google Scholar 

  20. Azzone GF, Pietrobon D, Zoratti M (1984) Determination of the proton electrochemical gradient across biological membranes. Curr Top Bioenerg 13:1–77

    Article  CAS  Google Scholar 

  21. Brown GC, Cooper CE (1995) Bioenergetics: a practical approach, 1st edn. Oxford University Press, USA

    Google Scholar 

  22. Ross MF, Kelso GF, Blaikie FH et al (2005) Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc) 70:222–230

    Article  CAS  Google Scholar 

  23. Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol 47:629–656

    Article  CAS  Google Scholar 

  24. Murphy MP, Smith RA (2000) Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev 41:235–250

    Article  CAS  PubMed  Google Scholar 

  25. Birnie GD (1972) Subcellular components: preparation and fractionation, 1st edn. Butterworth, UK

    Google Scholar 

  26. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  27. Kamo N, Kobatake Y (1986) Changes of surface and membrane potentials in biomembranes. Methods Enzymol 125:46–58

    Article  CAS  PubMed  Google Scholar 

  28. Kamo N, Muratsugu M, Hongoh R et al (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation for Science and Technology (FCT), Portugal (PEst-C/QUI/UI0081/2013), (PEst-C/SAU/LA0001/2013-2014), PTDC/SAU-TOX/110952/2009. J. Teixeira (SFRH/BD/79658/2011) acknowledges the FCT grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Borges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Teixeira, J., Soares, P., Benfeito, S., Murphy, M.P., Oliveira, P.J., Borges, F. (2015). Bridging the Gap Between Nature and Antioxidant Setbacks: Delivering Caffeic Acid to Mitochondria. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1265. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2288-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2288-8_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2287-1

  • Online ISBN: 978-1-4939-2288-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics