Abstract
This article presents a review of the field of molecular modeling of peptides. The main focus is on atomistic modeling with molecular mechanics potentials. The description of peptide conformations and solvation through potentials is discussed. Several important computer simulation methods are briefly introduced, including molecular dynamics, accelerated sampling approaches such as replica-exchange and metadynamics, free energy simulations and kinetic network models like Milestoning. Examples of recent applications for predictions of structure, kinetics, and interactions of peptides with complex environments are described. The reliability of current simulation methods is analyzed by comparison of computational predictions obtained using different models with each other and with experimental data. A brief discussion of coarse-grained modeling and future directions is also presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zambrowicz A, Timmer M, Polanowski A, Lubec G, Trziszka T (2013) Manufacturing of peptides exhibiting biological activity. Amino Acids 44:315–320
Kastin AJ (2006) Handbook of biologically active peptides. Academic Press, Amsterdam, Boston, pp 1–1636
Scior T, Bender A, Tresadern G, Medina-Franco JL, Martinez-Mayorga K, Langer T, Cuanalo-Contreras K, Agrafiotis DK (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881
MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616
Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614
Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012
Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487
Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) Gromacs: fast, flexible, and free. J Comput Chem 26:1701–1718
Poger D, Van Gunsteren WF, Mark AE (2010) A new force field for simulating phosphatidylcholine bilayers. J Comput Chem 31:1117–1125
Shi Y, Xia Z, Zhang J, Best R, Wu C, Ponder JW, Ren P (2013) The polarizable atomic multipole-based AMOEBA force field for proteins. J Chem Theory Comput 9:4046–4063
Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force-fields – application to liquid water. J Chem Phys 101:6141–6156
Jiang W, Hardy DJ, Phillips JC, MacKerell AD, Schulten K, Roux B (2011) High-performance scalable molecular dynamics simulations of a polarizable force field based on classical drude oscillators in NAMD.J Phys Chem Lett 2:87–92
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935
Berendsen H, Postma J, Van Gunsteren W, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, p 331
Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960
Rick SW (2004) A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums. J Chem Phys 120:6085–6093
Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129
Onufriev A, Case DA, Bashford D (2002) Effective Born radii in the generalized Born approximation: the importance of being perfect. J Comput Chem 23:1297–1304
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041
Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149
Ferrara P, Apostolakis J, Caflisch A (2002) Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins 46:24–33
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) Charmm – a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217
Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676
Saunders MG, Voth GA (2013) Coarse-graining methods for computational biology. Annu Rev Biophys 42:73–93
Noid WG (2013) Perspective: coarse-grained models for biomolecular systems. J Chem Phys 139(9):090901
Chebaro Y, Pasquali S, Derreumaux P (2012) The coarse-grained OPEP force field for non-amyloid and amyloid proteins. J Phys Chem B 116:8741–8752
Liwo A, Khalili M, Czaplewski C, Kalinowski S, Oldziej S, Wachucik K, Scheraga HA (2007) Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. J Phys Chem B 111:260–285
Kaufmann KW, Lemmon GH, DeLuca SL, Sheehan JH, Meiler J (2010) Practically useful: what the ROSETTA protein modeling suite can do for you. Biochemistry 49:2987–2998
Maisuradze GG, Senet P, Czaplewski C, Liwo A, Scheraga HA (2010) Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field. J Phys Chem A 114:4471–4485
Lewandowska A, Oldziej S, Liwo A, Scheraga HA (2010) beta-hairpin-forming peptides; models of early stages of protein folding. Biophys Chem 151:1–9
He Y, Mozolewska MA, Krupa P, Sieradzan AK, Wirecki TK, Liwo A, Kachlishvili K, Rackovsky S, Jagiela D, Slusarz R, Czaplewski CR, Oldziej S, Scheraga HA (2013) Lessons from application of the UNRES force field to predictions of structures of CASP10 targets. Proc Natl Acad Sci U S A 110:14936–14941
Swope WC, Andersen HC, Berens PH, Wilson KR (1982) A computer-simulation method for the calculation of equilibrium-constants for the formation of physical clusters of molecules – application to small water clusters. J Chem Phys 76:637–649
Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103
Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of cartesian equations of motion of a system with constraints – molecular-dynamics of N-alkanes. J Comput Phys 23:327–341
Barth E, Kuczera K, Leimkuhler B, Skeel RD (1995) Algorithms for constrained molecular-dynamics. J Comput Chem 16:1192–1209
Andersen HC (1983) Rattle – a velocity version of the shake algorithm for molecular-dynamics calculations. J Comput Phys 52:24–34
Miyamoto S, Kollman PA (1992) Settle – an analytical version of the Shake and Rattle algorithm for rigid water models. J Comput Chem 13:952–962
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472
Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular-dynamics. J Chem Phys 97:1990–2001
Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML (1996) Explicit reversible integrators for extended systems dynamics. Mol Phys 87:1117–1157
Mobley DL, Klimovich PV (2012) Perspective: alchemical free energy calculations for drug discovery. J Chem Phys 137:230901
Mezei M, Beveridge DL (1986) Free energy simulations. Ann N Y Acad Sci 482:1–23
Seeliger D, de Groot BL (2010) Protein thermostability calculations using alchemical free energy simulations. Biophys J 98:2309–2316
Mobley DL, Liu S, Cerutti DS, Swope WC, Rice JE (2012) Alchemical prediction of hydration free energies for SAMPL. J Comput Aid Mol Des 26:551–562
Boresch S, Karplus M (1995) The meaning of component analysis: decomposition of the free energy in terms of specific interactions. J Mol Biol 254:801–807
Gao J, Kuczera K, Tidor B, Karplus M (1989) Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science 244:1069–1072
Mugnai ML, Elber R (2012) Thermodynamic cycle without turning off self-interactions: formal discussion and a numerical example. J Chem Theory Comput 8:3022–3033
Torrie GM, Valleau JP (1974) Monte-Carlo free-energy estimates using non-Boltzmann sampling – application to subcritical lennard-jones fluid. Chem Phys Lett 28:578–581
Roux B (1995) The calculation of the potential of mean force using computer-simulations. Comput Phys Commun 91:275–282
Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. 1. The method. J Comput Chem 13:1011–1021
Karplus M, Elber R, Gao J, Kuczera K, Tidor B (1989) Dynamics and thermodynamics of myoglobin and hemoglobin. Cytochrome P-450: Biochemistry and Biophysics. pp 258–265
Kuczera K (1996) Free energy simulations of axial contacts in sickle-cell hemoglobin. Biopolymers 39:221–242
Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71:126601
Rodriguez-Gomez D, Darve E, Pohorille A (2004) Assessing the efficiency of free energy calculation methods. J Chem Phys 120:3563–3578
Merz KM (2010) Limits of free energy computation for protein–ligand interactions. J Chem Theory Comput 6:1769–1776
Jiang W, Hodoscek M, Roux B (2009) Computation of absolute hydration and binding free energy with free energy perturbation distributed replica-exchange molecular dynamics. J Chem Theory Comput 5:2583–2588
Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107:9535–9551
Mobley DL, Chodera JD, Dill KA (2006) On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J Chem Phys 125
Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts Chem Res 33:889–897
Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras-Raf. J Comput Chem 25:238–250
Carlsson J, Ander M, Nervall M, Aqvist J (2006) Continuum solvation models in the linear interaction energy method. J Phys Chem B 110:12034–12041
Swendsen RH, Wang JS (1986) Replica Monte-Carlo simulation of spin-glasses. Phys Rev Lett 57:2607–2609
Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151
Gnanakaran S, Nymeyer H, Portman J, Sanbonmatsu KY, Garcia AE (2003) Peptide folding simulations. Curr Opin Struct Biol 13:168–174
Hritz J, Oostenbrink C (2008) Hamiltonian replica exchange molecular dynamics using soft-core interactions. J Chem Phys 128
Kouza M, Hansmann UHE (2011) Velocity scaling for optimizing replica exchange molecular dynamics. J Chem Phys 134
Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78:3908–3911
Sinko W, de Oliveira CAF, Pierce LCT, McCammon JA (2012) Protecting high energy barriers: a new equation to regulate boost energy in accelerated molecular dynamics simulations. J Chem Theory Comput 8:17–23
Pierce LCT, Salomon-Ferrer R, de Oliveira CAF, McCammon JA, Walker RC (2012) Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput 8:2997–3002
Wang Y, Markwick PRL, de Oliveira CAF, McCammon JA (2011) Enhanced lipid diffusion and mixing in accelerated molecular dynamics. J Chem Theory Comput 7:3199–3207
Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC, Eastwood MP, Gagliardo J, Grossman JP, Ho CR, Ierardi DJ, Kolossvary I, Klepeis JL, Layman T, Mcleavey C, Moraes MA, Mueller R, Priest EC, Shan YB, Spengler J, Theobald M, Towles B, Wang SC (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51:91–97
Okamoto Y (2011) Drug design by generalized-ensemble simulations. Curr Pharm Design 17:1758–1772
Wu XW, Brooks BR (2011) Toward canonical ensemble distribution from self-guided Langevin dynamics simulation. J Chem Phys 134
Voter AF, Germann TC (1998) Accelerating the dynamics of infrequent events: combining hyperdynamics and parallel replica dynamics to treat epitaxial layer growth. Mater Res Soc Symp Proc 528:221–236
Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53:291–318
van Erp TS, Bolhuis PG (2005) Elaborating transition interface sampling methods. J Comput Phys 205:157–181
Allen RJ, Frenkel D, ten Wolde PR (2006) Forward flux sampling-type schemes for simulating rare events: efficiency analysis. J Chem Phys 124
Pande VS, Beauchamp K, Bowman GR (2010) Everything you wanted to know about Markov State Models but were afraid to ask. Methods 52:99–105
West AMA, Elber R, Shalloway D (2007) Extending molecular dynamics time scales with milestoning: example of complex kinetics in a solvated peptide. J Chem Phys 126
Majek P, Elber R (2010) Milestoning without a reaction coordinate. J Chem Theory Comput 6:1805–1817
Cardenas AE, Jas GS, DeLeon KY, Hegefeld WA, Kuczera K, Elber R (2012) Unassisted transport of N-acetyl-l-tryptophanamide through membrane: experiment and simulation of kinetics. J Phys Chem B 116:2739–2750
Prinz JH, Chodera JD, Pande VS, Swope WC, Smith JC, Noe F (2011) Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics. J Chem Phys 134(24):244108
Senne M, Trendelkamp-Schroer B, Mey ASJS, Schutte C, Noe F (2012) EMMA: a software package for Markov model building and analysis. J Chem Theory Comput 8:2223–2238
Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415
Brooks CL, Case DA (1993) Simulations of peptide conformational dynamics and thermodynamics. Chem Rev 93:2487–2502
Wang Y, Kuczera K (1996) Molecular dynamics simulations of cyclic and linear DPDPE: influence of the disulfide bond on peptide flexibility. J Phys Chem 100:2555–2563
Wang Y, Goh SY, Kuczera K (1999) Molecular dynamics study of disulfide bond influence on properties of an RGD peptide. J Pept Res 53(2):188–200
Mahadevan J, Xu C, Siahaan T, Kuczera K (2002) Molecular dynamics simulations of conformational behavior of linear RGD peptidomimetics and cyclic prodrugs in aqueous and octane solutions. J Biomol Struct Dyn 19:775–788
Buchete NV, Hummer G (2008) Coarse master equations for peptide folding dynamics. J Phys Chem B 112:6057–6069
Hegefeld WA, Chen SE, DeLeon KY, Kuczera K, Jas GS (2010) Helix formation in a pentapeptide experiment and force-field dependent dynamics. J Phys Chem A 114:12391–12402
Deleon KY, Patel AP, Kuczera K, Johnson CK, Jas GS (2012) Structure and reorientational dynamics of angiotensin I and II: a microscopic physical insight. J Biomol Struct Dyn 29:671–690
Hegefeld WA, Kuczera K, Jas GS (2011) Structural dynamics of neuropeptide hPYY. Biopolymers 95:487–502
Jas GS, Kuczera K (2012) Computer simulations of helix folding in homo- and heteropeptides. Mol Simulat 38:682–694
Tiradorives J, Jorgensen WL (1991) Molecular-dynamics simulations of the unfolding of an alpha-helical analog of ribonuclease-A S-peptide in water. Biochemistry 30:3864–3871
Soman KV, Karimi A, Case DA (1991) Unfolding of an alpha-helix in water. Biopolymers 31:1351–1361
Brooks CL (1993) Molecular simulations of peptide and protein unfolding – in quest of a molten globule. Curr Opin Struct Biol 3:92–98
Young WS, Brooks CL (1996) A microscopic view of helix propagation: N and C-terminal helix growth in alanine helices. J Mol Biol 259:560–572
Ferrara P, Apostolakis J, Caflisch A (2000) Computer simulations of protein folding by targeted molecular dynamics. Proteins 39:252–260
Chowdhury S, Zhang W, Wu C, Xiong GM, Duan Y (2003) Breaking non-native hydrophobic clusters is the rate-limiting step in the folding of an alanine-based peptide. Biopolymers 68:63–75
Zhang W, Lei HX, Chowdhury S, Duan Y (2004) Fs-21 peptides can form both single helix and helix-turn-helix. J Phys Chem B 108:7479–7489
Garcia AE, Sanbonmatsu KY (2002) Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds. Proc Natl Acad Sci U S A 99:2782–2787
Lin MM, Mohammed OF, Jas GS, Zewail AH (2011) Speed limit of protein folding evidenced in secondary structure dynamics. Proc Natl Acad Sci U S A 108:16622–16627
Dinner AR, Lazaridis T, Karplus M (1999) Understanding beta-hairpin formation. Proc Natl Acad Sci U S A 96:9068–9073
Klimov DK, Thirumalai D (2000) Mechanisms and kinetics of beta-hairpin formation. Proc Natl Acad Sci U S A 97:2544–2549
Garcia AE, Sanbonmatsu KY (2001) Exploring the energy landscape of a beta hairpin in explicit solvent. Proteins 42:345–354
Zhou RH, Berne BJ, Germain R (2001) The free energy landscape for beta hairpin folding in explicit water. Proc Natl Acad Sci U S A 98:14931–14936
Bolhuis PG (2003) Transition-path sampling of beta-hairpin folding. Proc Natl Acad Sci U S A 100:12129–12134
Czaplewski C, Kalinowski S, Liwo A, Scheraga HA (2009) Application of multiplexed replica exchange molecular dynamics to the UNRES force field: tests with alpha and alpha plus beta proteins. J Chem Theory Comput 5:627–640
Piana S, Lindorff-Larsen K, Dirks RM, Salmon JK, Dror RO, Shaw DE (2012) Evaluating the effects of cutoffs and treatment of long-range electrostatics in protein folding simulations. PloS One 7:e39918
Thompson PA, Munoz V, Jas GS, Henry ER, Eaton WA, Hofrichter J (2000) The helix-coil kinetics of a heteropeptide. J Phys Chem B 104:378–389
Munoz V, Thompson PA, Hofrichter J, Eaton WA (1997) Folding dynamics and mechanism of beta-hairpin formation. Nature 390:196–199
Ferrara P, Apostolakis J, Caflisch A (2000) Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations. J Phys Chem B 104:5000–5010
Ferrara P, Caflisch A (2000) Folding simulations of a three-stranded antiparallel beta-sheet peptide. Proc Natl Acad Sci U S A 97:10780–10785
Ihalainen JA, Paoli B, Muff S, Backus EHG, Bredenbeck J, Woolley GA, Caflisch A, Hamm P (2008) alpha-Helix folding in the presence of structural constraints. Proc Natl Acad Sci U S A 105:9588–9593
Jas GS, Hegefeld WA, Majek P, Kuczera K, Elber R (2012) Experiments and comprehensive simulations of the formation of a helical turn. J Phys Chem B 116:6598–6610
Kuczera K, Jas GS, Elber R (2009) Kinetics of helix unfolding: molecular dynamics simulations with milestoning. J Phys Chem A 113:7461–7473
Im W, Brooks CL (2005) Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc Natl Acad Sci U S A 102:6771–6776
Nymeyer H, Woolf TB, Garcia AE (2005) Folding is not required for bilayer insertion: replica exchange simulations of an alpha-helical peptide with an explicit lipid bilayer. Proteins 59:783–790
Houndonougbo Y, Kuczera K, Jas GS (2005) Structure and dynamics of phospholamban in solution and in membrane bilayer: computer simulations. Biochemistry 44:1780–1792
Houndonougbo Y, Kuczera K, Jas GS (2008) Effects of CMAP and electrostatic cutoffs on the dynamics of an integral membrane protein: the phospholamban study. J Biomol Struct Dyn 26:17–34
Herce HD, Garcia AE (2007) Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc Natl Acad Sci U S A 104:20805–20810
Herce HD, Garcia AE, Litt J, Kane RS, Martin P, Enrique N, Rebolledo A, Milesi V (2009) Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophys J 97:1917–1925
Bond PJ, Khalid S (2010) Antimicrobial and cell-penetrating peptides: structure, assembly and mechanisms of membrane lysis via atomistic and coarse-grained molecular dynamic simulations. Protein Pept Lett 17:1313–1327
Yang C, Jas GS, Kuczera K (2004) Structure, dynamics and interaction with kinase targets: computer simulations of calmodulin. Biochim Biophys Acta 1697:289–300
Kuczera K, Kursula P (2012) Interactions of calmodulin with death-associated protein kinase peptides: experimental and modeling studies. J Biomol Struct Dyn 30:45–61
Gan WX, Roux B (2009) Binding specificity of SH2 domains: insight from free energy simulations. Proteins 74:996–1007
Lin YL, Meng YL, Jiang W, Roux B (2013) Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc Natl Acad Sci U S A 110:1664–1669
Lemkul JA, Bevan DR (2012) The role of molecular simulations in the development of inhibitors of amyloid beta-peptide aggregation for the treatment of Alzheimer’s disease. ACS Chem Neurosci 3:845–856
Shea JE, Urbanc B (2012) Insights into A beta aggregation: a molecular dynamics perspective. Curr Top Med Chem 12:2596–2610
Nasica-Labouze J, Mousseau N (2012) Kinetics of amyloid aggregation: a study of the GNNQQNY prion sequence. Plos Comput Biol 8(11):e1002782
Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Edit 38:236–240
Daura X, Gademann K, Schafer H, Jaun B, Seebach D, van Gunsteren WF (2001) The beta-peptide hairpin in solution: conformational study of a beta-hexapeptide in methanol by NMR spectroscopy and MD simulation. J Am Chem Soc 123:2393–2404
Gattin Z, Zaugg J, van Gunsteren WF (2010) Structure determination of a flexible cyclic peptide based on NMR and MD simulation 3J-coupling. Chemphyschem 11:830–835
Kuczera K, Unruh J, Johnson CK, Jas GS (2010) Reorientations of aromatic amino acids and their side chain models: anisotropy measurements and molecular dynamics simulations. J Phys Chem A 114:133–142
Jas GS, Wang Y, Pauls SW, Johnson CK, Kuczera K (1997) Influence of temperature and viscosity on anthracene rotational diffusion in organic solvents: molecular dynamics simulations and fluorescence anisotropy study. J Chem Phys 107:8800–8812
Jas GS, Larson EJ, Johnson CK, Kuczera K (2000) Microscopic details of rotational diffusion of perylene in organic solvents: molecular dynamics simulation and experiment vs Debye-Stokes-Einstein theory. J Phys Chem A 104:9841–9852
Unruh JR, Kuczera K, Johnson CK (2009) Conformational heterogeneity of a leucine enkephalin analogue in aqueous solution and sodium dodecyl sulfate micelles: comparison of time-resolved FRET and molecular dynamics simulations. J Phys Chem B 113:14381–14392
Piana S, Lindorff-Larsen K, Shaw DE (2011) How robust are protein folding simulations with respect to force field parameterization? Biophys J 100:L47–L49, Erratum in 2011 Aug 17;101(4):1015
Matthes D, de Groot BL (2009) Secondary structure propensities in peptide folding simulations: a systematic comparison of molecular mechanics interaction schemes. Biophys J 97:599–608
Piana S, Lindorff-Larsen K, Shaw DE (2012) Protein folding kinetics and thermodynamics from atomistic simulation. Proc Natl Acad Sci U S A 109:17845–17850
Ruymgaart AP, Cardenas AE, Elber R (2011) MOIL-opt: energy-conserving molecular dynamics on a GPU/CPU system. J Chem Theory Comput 7:3072–3082
van der Kamp MW, Mulholland AJ (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52:2708–2728
Dracinsky M, Moller HM, Exner TE (2013) Conformational sampling by ab initio molecular dynamics simulations improves NMR chemical shift predictions. J Chem Theory Comput 9:3806–3815
Vreven T, Morokuma K, Farkas O, Schlegel HB, Frisch MJ (2003) Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. J Comput Chem 24:760–769
de Pablo JJ (2011) Coarse-grained simulations of macromolecules: from DNA to nanocomposites. Annu Rev Phys Chem 62:555–574
Kraulis PJ (1991) Molscript – a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950
Esnouf RM (1999) Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D 55:938–940
Merritt EA, Bacon DJ (1997) Raster3D: photorealistic molecular graphics. Method Enzymol 277:505–524
Blanco FJ, Jimenez MA, Pineda A, Rico M, Santoro J, Nieto JL (1994) NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry 33:6004–6014
Lamberth S, Schmid H, Muenchbach M, Vorherr T, Krebs J, Carafoli E, Griesinger C (2000) NMR solution structure of phospholamban. Helv Chim Acta 83:2141–2152
Nygaard R, Nielbo S, Schwartz TW, Poulsen FM (2006) The PP-fold solution structure of human polypeptide YY and human PYY3-36 as determined by NMR. Biochemistry 45:8350–8357
Meador WE, Means AR, Quiocho FA (1992) Target enzyme recognition by calmodulin – 2.4-angstrom structure of a calmodulin-peptide complex. Science 257:1251–1255
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this protocol
Cite this protocol
Kuczera, K. (2015). Molecular Modeling of Peptides. In: Zhou, P., Huang, J. (eds) Computational Peptidology. Methods in Molecular Biology, vol 1268. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2285-7_2
Download citation
DOI: https://doi.org/10.1007/978-1-4939-2285-7_2
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-2284-0
Online ISBN: 978-1-4939-2285-7
eBook Packages: Springer Protocols