Information-Driven Modeling of Protein-Peptide Complexes

Part of the Methods in Molecular Biology book series (MIMB, volume 1268)


Despite their biological importance in many regulatory processes, protein-peptide recognition mechanisms are difficult to study experimentally at the structural level because of the inherent flexibility of peptides and the often transient interactions on which they rely. Complementary methods like biomolecular docking are therefore required. The prediction of the three-dimensional structure of protein-peptide complexes raises unique challenges for computational algorithms, as exemplified by the recent introduction of protein-peptide targets in the blind international experiment CAPRI (Critical Assessment of PRedicted Interactions). Conventional protein-protein docking approaches are often struggling with the high flexibility of peptides whose short sizes impede protocols and scoring functions developed for larger interfaces. On the other side, protein-small ligand docking methods are unable to cope with the larger number of degrees of freedom in peptides compared to small molecules and the typically reduced available information to define the binding site. In this chapter, we describe a protocol to model protein-peptide complexes using the HADDOCK web server, working through a test case to illustrate every steps. The flexibility challenge that peptides represent is dealt with by combining elements of conformational selection and induced fit molecular recognition theories.

Key words

Biomolecular interactions Information-driven docking Conformational changes Flexibility HADDOCK Molecular modeling 


  1. 1.
    Tzakos AG, Fuchs P, van Nuland NA et al (2004) NMR and molecular dynamics studies of an autoimmune myelin basic protein peptide and its antagonist: structural implications for the MHC II (I-Au)-peptide complex from docking calculations. Eur J Biochem 271:3399–3413PubMedCrossRefGoogle Scholar
  2. 2.
    Musi V, Birdsall B, Fernandez-Ballester G et al (2006) New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae. Protein Sci 15:795–807PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Huang BX, Kim H-Y (2006) Interdomain conformational changes in Akt activation revealed by chemical cross-linking and tandem mass spectrometry. Mol Cell Proteomics 5:1045–1053PubMedCrossRefGoogle Scholar
  4. 4.
    Casares S, Ab E, Eshuis H et al (2007) The high-resolution NMR structure of the R21A Spc-SH3:P41 complex: understanding the determinants of binding affinity by comparison with Abl-SH3. BMC Struct Biol 7:22PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Gelis I, Bonvin AM, Keramisanou D et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Schneider T, Kruse T, Wimmer R et al (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172PubMedCrossRefGoogle Scholar
  7. 7.
    Wodak SJ, Janin J (1978) Computer analysis of protein-protein interaction. J Mol Biol 124:323–342PubMedCrossRefGoogle Scholar
  8. 8.
    Strynadka NCJ, Eisenstein M, Katchalski-Katzir E et al (1996) Molecular docking programs successfully predict the binding of a β-lactamase inhibitory protein to TEM-1 β-lactamase. Nat Struct Mol Biol 3:233–239CrossRefGoogle Scholar
  9. 9.
    Petsalaki E, Russell RB (2008) Peptide-mediated interactions in biological systems: new discoveries and applications. Curr Opin Biotechnol 19:344–350PubMedCrossRefGoogle Scholar
  10. 10.
    Stein A, Aloy P (2008) Contextual specificity in peptide-mediated protein interactions. PLoS One 3:e2524PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18:188–199PubMedCrossRefGoogle Scholar
  12. 12.
    London N, Raveh B, Schueler-Furman O (2013) Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr Opin Struct Biol 23:894–902PubMedCrossRefGoogle Scholar
  13. 13.
    Petsalaki E, Stark A, Garcia-Urdiales E, Russell RB (2009) Accurate prediction of peptide binding sites on protein surfaces. PLoS Comput Biol 5:e1000335PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Antes I (2010) DynaDock: a new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility. Proteins 78:1084–1104PubMedCrossRefGoogle Scholar
  15. 15.
    Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78:2029–2040PubMedGoogle Scholar
  16. 16.
    Ben-Shimon A, Eisenstein M (2010) Computational mapping of anchoring spots on protein surfaces. J Mol Biol 402:259–277PubMedCrossRefGoogle Scholar
  17. 17.
    Dagliyan O, Proctor EA, D’Auria KM et al (2011) Structural and dynamic determinants of protein-peptide recognition. Structure 19:1837–1845PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6:e18934PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Donsky E, Wolfson HJ (2011) PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics 27:2836–2842PubMedCrossRefGoogle Scholar
  20. 20.
    Lavi A, Ngan CH, Movshovitz-Attias D et al (2013) Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins 81:2096–2105PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Verschueren E, Vanhee P, Rousseau F et al (2013) Protein-peptide complex prediction through fragment interaction patterns. Structure 21:789–797PubMedCrossRefGoogle Scholar
  22. 22.
    De Vries SJ, van Dijk AD, Krzeminski M et al (2007) HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69:726–733PubMedCrossRefGoogle Scholar
  23. 23.
    Trellet M, Melquiond ASJ, Bonvin AMJJ (2013) A unified conformational selection and induced fit approach to protein-peptide docking. PLoS One 8:e58769PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737PubMedCrossRefGoogle Scholar
  25. 25.
    Brünger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921PubMedCrossRefGoogle Scholar
  26. 26.
    Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2:2728–2733PubMedCrossRefGoogle Scholar
  27. 27.
    Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666CrossRefGoogle Scholar
  28. 28.
    Moreira IS, Fernandes PA, Ramos MJ (2010) Protein-protein docking dealing with the unknown. J Comput Chem 31:317–342PubMedGoogle Scholar
  29. 29.
    Lensink MF, Wodak SJ (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81:2082–2095PubMedCrossRefGoogle Scholar
  30. 30.
    Diella F, Haslam N, Chica C et al (2008) Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 13:6580–6603PubMedCrossRefGoogle Scholar
  31. 31.
    Van Dijk ADJ, Boelens R, Bonvin AMJJ (2005) Data-driven docking for the study of biomolecular complexes. FEBS J 272:293–312PubMedCrossRefGoogle Scholar
  32. 32.
    Melquiond ASJ, Bonvin AMJJ (2010) Data-driven docking: using external information to spark the biomolecular rendez-vous. In: Protein-protein complexes: analysis, modelling and drug design. Edited by M. Zacharrias, Imperial College Press, London, p 183–209Google Scholar
  33. 33.
    Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  34. 34.
    Janin J, Henrick K, Moult J et al (2003) CAPRI: a Critical Assessment of PRedicted Interactions. Proteins 52:2–9PubMedCrossRefGoogle Scholar
  35. 35.
    Lensink MF, Wodak SJ (2010) Docking and scoring protein interactions: CAPRI 2009. Proteins 78:3073–3084PubMedCrossRefGoogle Scholar
  36. 36.
    Schrodinger L (2010) The PyMOL molecular graphics system, version 1.3r1Google Scholar
  37. 37.
    Claude J-B, Suhre K, Notredame C et al (2004) CaspR: a web server for automated molecular replacement using homology modelling. Nucleic Acids Res 32:W606–W609PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science, ChemistryUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations