Skip to main content

Ligation of Synthetic Peptides to Proteins Using Semisynthetic Protein trans-Splicing

  • Protocol
  • First Online:
Site-Specific Protein Labeling

Abstract

Protein trans-splicing using split inteins is a powerful and convenient reaction to chemically modify recombinantly expressed proteins under mild conditions. In particular, semisynthetic protein trans-splicing with one intein fragment short enough to be accessible by solid-phase peptide synthesis can be used to transfer a short peptide segment with the desired synthetic moiety to the protein of interest. In this chapter, we provide detailed protocols for two such split intein systems. The M86 mutant of the Ssp DnaB intein and the MX1 mutant of the AceL-TerL intein are two highly engineered split inteins with very short N-terminal intein fragments of only 11 and 25 amino acids, respectively, and allow the efficient N-terminal labeling of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779

    Article  CAS  PubMed  Google Scholar 

  2. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95(12):6705–6710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Nilsson BL, Kiessling LL, Raines RT (2000) Staudinger ligation: a peptide from a thioester and azide. Org Lett 2(13):1939–1941

    Article  CAS  PubMed  Google Scholar 

  4. Saxon E, Armstrong JI, Bertozzi CR (2000) A “traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org Lett 2(14):2141–2143

    Article  CAS  PubMed  Google Scholar 

  5. Bode JW, Fox RM, Baucom KD (2006) Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and alpha-ketoacids. Angew Chem Int Ed 45(8):1248–1252. doi:10.1002/anie.200503991

    Article  CAS  Google Scholar 

  6. Mao HY, Hart SA, Schink A, Pollok BA (2004) Sortase-mediated protein ligation: a new method for protein engineering. J Am Chem Soc 126(9):2670–2671. doi:10.1021/Ja039915e

    Article  CAS  PubMed  Google Scholar 

  7. Noren CJ, Wang JM, Perler FB (2000) Dissecting the chemistry of protein splicing and its applications. Angew Chem Int Ed 39(3):450–466

    Article  CAS  Google Scholar 

  8. Volkmann G, Mootz HD (2013) Recent progress in intein research: from mechanism to directed evolution and applications. Cell Mol Life Sci 70(7):1185–1206. doi:10.1007/s00018-012-1120-4

    Article  CAS  PubMed  Google Scholar 

  9. Shah NH, Muir TW (2014) Inteins: nature’s gift to protein chemists. Chem Sci 5:446–461. doi:10.1039/C3SC52951G

    Article  CAS  PubMed  Google Scholar 

  10. Shi J, Muir TW (2005) Development of a tandem protein trans-splicing system based on native and engineered split inteins. J Am Chem Soc 127(17):6198–6206

    Article  CAS  PubMed  Google Scholar 

  11. Shah NH, Eryilmaz E, Cowburn D, Muir TW (2013) Extein residues play an intimate role in the rate-limiting step of protein trans-splicing. J Am Chem Soc 135(15):5839–5847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Schwarzer D, Ludwig C, Thiel IV, Mootz HD (2012) Probing intein-catalyzed thioester formation by unnatural amino acid substitutions in the active site. Biochemistry 51(1):233–242

    Article  CAS  PubMed  Google Scholar 

  13. Appleby-Tagoe JH, Thiel IV, Wang Y, Mootz HD, Liu XQ (2011) Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J Biol Chem 286(39):34440–34447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Binschik J, Zettler J, Mootz HD (2011) Photocontrol of protein activity mediated by the cleavage reaction of a split intein. Angew Chem Int Ed Engl 50(14):3249–3252

    Article  CAS  PubMed  Google Scholar 

  15. Giriat I, Muir TW (2003) Protein semi-synthesis in living cells. J Am Chem Soc 125(24):7180–7181. doi:10.1021/ja034736i

    Article  CAS  PubMed  Google Scholar 

  16. Mootz HD (2009) Split inteins as versatile tools for protein semisynthesis. Chembiochem 10(16):2579–2589. doi:10.1002/cbic.200900370

    Article  CAS  PubMed  Google Scholar 

  17. Volkmann G, Liu XQ (2009) Protein C-terminal labeling and biotinylation using synthetic peptide and split-intein. PLoS One 4(12):e8381. doi:10.1371/journal.pone.0008381

    Article  PubMed Central  PubMed  Google Scholar 

  18. Appleby JH, Zhou K, Volkmann G, Liu X-Q (2009) Novel split intein for trans-splicing synthetic peptide onto C terminus of protein. J Biol Chem 284(10):6194–6199

    Article  CAS  PubMed  Google Scholar 

  19. Thiel IV, Volkmann G, Pietrokovski S, Mootz HD (2014) An atypical naturally split intein engineered for highly efficient protein labeling. Angew Chem Int Ed Engl. doi:10.1002/anie.201307969

    Google Scholar 

  20. Aranko AS, Zuger S, Buchinger E, Iwai H (2009) In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins. PLoS One 4(4):e5185. doi:10.1371/journal.pone.0005185

    Article  PubMed Central  PubMed  Google Scholar 

  21. Oeemig JS, Aranko AS, Djupsjobacka J, Heinamaki K, Iwai H (2009) Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett 583(9):1451–1456. doi:10.1016/j.febslet.2009.03.058

    Article  CAS  PubMed  Google Scholar 

  22. Borra R, Dong D, Elnagar AY, Woldemariam GA, Camarero JA (2012) In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J Am Chem Soc 134(14):6344–6353. doi:10.1021/ja300209u

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ludwig C, Pfeiff M, Linne U, Mootz HD (2006) Ligation of a synthetic peptide to the N terminus of a recombinant protein using semisynthetic protein trans-splicing. Angew Chem Int Ed Engl 45(31):5218–5221

    Article  CAS  PubMed  Google Scholar 

  24. Ludwig C, Schwarzer D, Mootz HD (2008) Interaction studies and alanine scanning analysis of a semi-synthetic split intein reveal thiazoline ring formation from an intermediate of the protein splicing reaction. J Biol Chem 283(37):25264–25272

    Article  CAS  PubMed  Google Scholar 

  25. Wasmuth A, Ludwig C, Mootz HD (2013) Structure–activity studies on the upstream splice junction of a semisynthetic intein. Bioorg Med Chem 21(12):3495–3503

    Article  CAS  PubMed  Google Scholar 

  26. Wu H, Xu M-Q, Liu X-Q (1998) Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim et Biophys Acta 1387(1–2):422–432

    Article  CAS  Google Scholar 

  27. Sun W, Yang J, Liu X-Q (2004) Synthetic two-piece and three-piece split inteins for protein trans-splicing. J Biol Chem 279(34):35281–35286

    Article  CAS  PubMed  Google Scholar 

  28. Brenzel S, Kurpiers T, Mootz HD (2006) Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein. Biochemistry 45(6):1571–1578

    Article  CAS  PubMed  Google Scholar 

  29. Cheriyan M, Pedamallu CS, Tori K, Perler F (2013) Faster protein splicing with the Nostoc punctiforme DnaE intein using non-native extein residues. J Biol Chem 288(9):6202–6211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Amitai G, Callahan BP, Stanger MJ, Belfort G, Belfort M (2009) Modulation of intein activity by its neighboring extein substrates. Proc Natl Acad Sci U S A 106(27):11005–11010. doi:10.1073/pnas.0904366106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kurpiers T, Mootz HD (2007) Regioselective cysteine bioconjugation by appending a labeled cystein tag to a protein by using protein splicing in trans. Angew Chem Int Ed Engl 46(27):5234–5237

    Article  CAS  PubMed  Google Scholar 

  32. Zettler J, Schutz V, Mootz HD (2009) The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett 583(5):909–914. doi:10.1016/j.febslet.2009.02.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Xiang-Qin Liu (Dalhousie University, Canada) for collaboration on initial work on the M86 mutant and Shmuel Pietrokovski (Weizmann Institute, Israel) for collaboration on the AceL-TerL intein. We acknowledge funding by DFG (grants MO1073/3-2; SPP1623, MO1073/5-1, and Cells-in-Motion excellence cluster, EXC1003) and Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning D. Mootz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Matern, J.C.J. et al. (2015). Ligation of Synthetic Peptides to Proteins Using Semisynthetic Protein trans-Splicing. In: Gautier, A., Hinner, M. (eds) Site-Specific Protein Labeling. Methods in Molecular Biology, vol 1266. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2272-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2272-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2271-0

  • Online ISBN: 978-1-4939-2272-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics