Fluorescent Labeling of SNAP-Tagged Proteins in Cells

  • Gražvydas Lukinavičius
  • Luc Reymond
  • Kai JohnssonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1266)


One of the most prominent self-labeling tags is SNAP-tag. It is an in vitro evolution product of the human DNA repair protein O 6-alkylguanine-DNA alkyltransferase (hAGT) that reacts specifically with benzylguanine (BG) and benzylchloropyrimidine (CP) derivatives, leading to covalent labeling of SNAP-tag with a synthetic probe (Gronemeyer et al., Protein Eng Des Sel 19:309–316, 2006; Curr Opin Biotechnol 16:453–458, 2005; Keppler et al., Nat Biotechnol 21:86–89, 2003; Proc Natl Acad Sci U S A 101:9955–9959, 2004). SNAP-tag is well suited for the analysis and quantification of fused target protein using fluorescence microscopy techniques. It provides a simple, robust, and versatile approach to the imaging of fusion proteins under a wide range of experimental conditions.

Key words

Snap-tag Synthetic fluorophores Living and fixed cells Covalent labeling Self-labeling tags Fluorescence microscopy Episomal protein expression 


  1. 1.
    Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224PubMedCrossRefGoogle Scholar
  2. 2.
    van de Linde S, Heilemann M, Sauer M (2012) Live-cell super-resolution imaging with synthetic fluorophores. Annu Rev Phys Chem 63:519–540PubMedCrossRefGoogle Scholar
  3. 3.
    Gronemeyer T, Chidley C, Juillerat A, Heinis C, Johnsson K (2006) Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Eng Des Sel 19:309–316PubMedCrossRefGoogle Scholar
  4. 4.
    Gronemeyer T, Godin G, Johnsson K (2005) Adding value to fusion proteins through covalent labelling. Curr Opin Biotechnol 16:453–458PubMedCrossRefGoogle Scholar
  5. 5.
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89PubMedCrossRefGoogle Scholar
  6. 6.
    Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A 101:9955–9959PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 21:766–776PubMedCrossRefGoogle Scholar
  8. 8.
    Keppler A, Arrivoli C, Sironi L, Ellenberg J (2006) Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum. Biotechniques 41:167–170, 172, 174–175PubMedCrossRefGoogle Scholar
  9. 9.
    Reymond L, Lukinavicius G, Umezawa K, Maurel D, Brun MA, Masharina A, Bojkowska K, Mollwitz B, Schena A, Griss R, Johnsson K (2011) Visualizing biochemical activities in living cells through chemistry. Chimia (Aarau) 65:868–871CrossRefGoogle Scholar
  10. 10.
    Breitsprecher D, Jaiswal R, Bombardier JP, Gould CJ, Gelles J, Goode BL (2012) Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging. Science 336:1164–1168PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Hoskins AA, Friedman LJ, Gallagher SS, Crawford DJ, Anderson EG, Wombacher R, Ramirez N, Cornish VW, Gelles J, Moore MJ (2011) Ordered and dynamic assembly of single spliceosomes. Science 331:1289–1295PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Dellagiacoma C, Lukinavicius G, Bocchio N, Banala S, Geissbuhler S, Marki I, Johnsson K, Lasser T (2010) Targeted photoswitchable probe for nanoscopy of biological structures. Chembiochem 11:1361–1363PubMedCrossRefGoogle Scholar
  13. 13.
    Jones SA, Shim SH, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–508PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Foraker AB, Camus SM, Evans TM, Majeed SR, Chen CY, Taner SB, Correa IR Jr, Doxsey SJ, Brodsky FM (2012) Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG. J Cell Biol 198:591–605PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Keppler A, Ellenberg J (2009) Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells. ACS Chem Biol 4:127–138PubMedCrossRefGoogle Scholar
  16. 16.
    Gautier A, Nakata E, Lukinavicius G, Tan KT, Johnsson K (2009) Selective cross-linking of interacting proteins using self-labeling tags. J Am Chem Soc 131:17954–17962PubMedCrossRefGoogle Scholar
  17. 17.
    Lukinavicius G, Lavogina D, Orpinell M, Umezawa K, Reymond L, Garin N, Gonczy P, Johnsson K (2013) Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. Curr Biol 23:265–270PubMedCrossRefGoogle Scholar
  18. 18.
    Chidley C, Haruki H, Pedersen MG, Muller E, Johnsson K (2011) A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis. Nat Chem Biol 7:375–383PubMedCrossRefGoogle Scholar
  19. 19.
    Haruki H, Gonzalez MR, Johnsson K (2012) Exploiting ligand–protein conjugates to monitor ligand–receptor interactions. PLoS One 7:e37598PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Bojkowska K, Santoni de Sio F, Barde I, Offner S, Verp S, Heinis C, Johnsson K, Trono D (2011) Measuring in vivo protein half-life. Chem Biol 18:805–815PubMedCrossRefGoogle Scholar
  21. 21.
    Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136PubMedCrossRefGoogle Scholar
  22. 22.
    Yang Y, Zhang CY (2013) Simultaneous measurement of SUMOylation using SNAP/CLIP-tag-mediated translation at the single-molecule level. Angew Chem Int Ed Engl 52:691–694PubMedCrossRefGoogle Scholar
  23. 23.
    Lukinavicius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Correa IR Jr, Luo ZG, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139PubMedCrossRefGoogle Scholar
  24. 24.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782PubMedCrossRefGoogle Scholar
  25. 25.
    Kolmakov K, Wurm CA, Hennig R, Rapp E, Jakobs S, Belov VN, Hell SW (2012) Red-emitting rhodamines with hydroxylated, sulfonated, and phosphorylated dye residues and their use in fluorescence nanoscopy. Chemistry 18:12986–12998PubMedCrossRefGoogle Scholar
  26. 26.
    Chmyrov A, Keller J, Grotjohann T, Ratz M, d'Este E, Jakobs S, Eggeling C, Hell SW (2013) Nanoscopy with more than 100,000 ‘doughnuts’. Nat Methods 10:737–740PubMedCrossRefGoogle Scholar
  27. 27.
    Vicidomini G, Schonle A, Ta H, Han KY, Moneron G, Eggeling C, Hell SW (2013) STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS One 8:e54421PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Gottfert F, Wurm CA, Mueller V, Berning S, Cordes VC, Honigmann A, Hell SW (2013) Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105:L01–L03PubMedCentralPubMedGoogle Scholar
  29. 29.
    Pellett PA, Sun X, Gould TJ, Rothman JE, Xu MQ, Correa IR Jr, Bewersdorf J (2011) Two-color STED microscopy in living cells. Biomed Opt Express 2:2364–2371PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5:e10611PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Bach M, Grigat S, Pawlik B, Fork C, Utermohlen O, Pal S, Banczyk D, Lazar A, Schomig E, Grundemann D (2007) Fast set-up of doxycycline-inducible protein expression in human cell lines with a single plasmid based on Epstein–Barr virus replication and the simple tetracycline repressor. FEBS J 274:783–790PubMedCrossRefGoogle Scholar
  32. 32.
    Vara J, Perez-Gonzalez JA, Jimenez A (1985) Biosynthesis of puromycin by Streptomyces alboniger: characterization of puromycin N-acetyltransferase. Biochemistry 24:8074–8081PubMedCrossRefGoogle Scholar
  33. 33.
    Sekeroglu ZA, Afan F, Sekeroglu V (2012) Genotoxic and cytotoxic effects of doxycycline in cultured human peripheral blood lymphocytes. Drug Chem Toxicol 35:334–340PubMedCrossRefGoogle Scholar
  34. 34.
    Correa IR, Baker B, Zhang A, Sun L, Provost CR, Lukinavicius G, Reymond L, Johnsson K, Xu MQ (2013) Substrates for improved live-cell fluorescence labeling of SNAP-tag. Curr Pharm Des 19:5414–5420PubMedCrossRefGoogle Scholar
  35. 35.
    Luther PW, Bloch RJ (1989) Formaldehyde-amine fixatives for immunocytochemistry of cultured Xenopus myocytes. J Histochem Cytochem 37:75–82PubMedCrossRefGoogle Scholar
  36. 36.
    Sun X, Zhang A, Baker B, Sun L, Howard A, Buswell J, Maurel D, Masharina A, Johnsson K, Noren CJ, Xu MQ, Correa IR Jr (2011) Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging. Chembiochem 12:2217–2226PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gražvydas Lukinavičius
    • 1
  • Luc Reymond
    • 1
  • Kai Johnsson
    • 1
    Email author
  1. 1.Institute of Chemical Sciences and Engineering, NCCR Chemical BiologyÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations