Skip to main content

BONCAT: Metabolic Labeling, Click Chemistry, and Affinity Purification of Newly Synthesized Proteomes

  • Protocol
  • First Online:
Site-Specific Protein Labeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1266))

Abstract

Metabolic labeling of proteins using classical radioisotope-labeled amino acids has enabled the analysis and function of protein synthesis for many biological processes but cannot be combined with modern high-throughput mass spectrometry analysis. This chapter describes the unbiased identification of a whole de novo synthesized proteome of cultured cells or of a translationally active subcellular fraction of the mammalian brain. This technique relies on the introduction of a small bioorthogonal reactive group by metabolic labeling accomplished by replacing the amino acid methionine by the azide-bearing methionine surrogate azidohomoalanine (AHA) or the amino acid homopropargylglycine (HPG). Subsequently an alkyne- or azide-bearing affinity tag is covalently attached to the group by “click chemistry”—a copper(I)-catalyzed [3+2] azide-alkyne cycloaddition. Affinity tag-labeled proteins can be analyzed in candidate-based approaches by conventional biochemical methods or with high-throughput mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  CAS  PubMed  Google Scholar 

  2. Pielot R, Smalla KH, Müller A et al (2012) SynProt: a database for proteins of detergent-resistant synaptic protein preparations. Front Synaptic Neurosci 10(3389)

    Google Scholar 

  3. Cohen LD, Zuchman R, Sorokina O et al (2013) Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS One 8:e63191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. de Godoy LM, Olsen JV, de Souza GA et al (2006) Status of complete proteome analysis by mass spectrometry: SILAC labelled yeast as a model system. Genome Biol 7:R50

    Article  PubMed Central  PubMed  Google Scholar 

  5. Dieterich DC, Link AJ, Graumann J et al (2006) Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci U S A 103:9482–9487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dieterich DC, Lee JJ, Link AJ et al (2007) Labeling, detection and identification of newly synthesized proteomes with bioorthogonal noncanonical amino acid tagging. Nat Protoc 2:532–540

    Article  PubMed  Google Scholar 

  7. Dieterich DC, Hodas JJ, Gouzer G et al (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13:897–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Taylor AM, Dieterich DC, Ito HT et al (2010) Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron 66:57–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Link AJ, Vink MKS, Tirell DA (2007) Preparation of the functionalizable methionine surrogate azidohomoalanine via copper-catalyzed diazo transfer. Nat Protoc 2:1879–1883

    Article  CAS  PubMed  Google Scholar 

  10. Goslin K, Asmussen H, Banker G (1989) Rat hippocampal neurons in low-density culture. In: Banker G, Goslin K (eds) Culturing nerve cells. MIT Press, Cambridge, pp 339–370

    Google Scholar 

  11. Kiebler MA, Lopez-Garcia JC, Leopold PL (1999) Purification and characterization of rat hippocampal CA3-dendritic spines associated with mossy fiber terminals. FEBS Lett 445:80–86

    Article  CAS  PubMed  Google Scholar 

  12. Rao A, Steward O (1991) Evidence that protein constituents of postsynaptic membrane specialisations are locally synthesized: analysis of proteins synthesized within synaptosomes. J Neurosci 11:2881–2895

    CAS  PubMed  Google Scholar 

  13. Williams C, Shai RM, Wu Y et al (2009) Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer disease. PLoS One 4:e4936. doi:10.1371/journal.pone0004936

    Article  PubMed Central  PubMed  Google Scholar 

  14. Troca-Marin JA, Alves-Sampaio A, Tejedor FJ et al (2010) Local translation of dendritic RhoA revealed by an improved synaptoneurosome preparation. Mol Cell Neurosci 43:308–314

    Article  CAS  PubMed  Google Scholar 

  15. Szychowski J, Mahdavi A, Hodas JJ et al (2010) Cleavable biotin probes for labeling of biomolecules via azide-alkyne cycloaddition. J Am Chem Soc 132:18351–18360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bruice PY (2004) Organic chemistry, 4th edn. Pearson Education Inc, New Delhi, pp 960–962

    Google Scholar 

  17. Howden AJM, Geoghegan V, Katsch K et al (2013) QuaNCAT: quantitating proteome dynamics in primary cells. Nat Methods 10:343–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Meffert MK, Premack BA, Schulman H (1994) Nitric oxide stimulates Ca2+ -independent synaptic vesicle release. Neuron 12:1235–1244

    Article  CAS  PubMed  Google Scholar 

  19. Brewer GJ, Price PJ (1996) Viable cultured neurons in ambient hibernate storage for a month. Neuroreport 7:1509–1512

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has received funding from the Deutsche Forschungsgemeinschaft (DI1512/1-1 and DI1512/1-2), the DIP (Deutsch-Israelische-Projektkooperation) German-Israeli Project Cooperation foundation, and the CBBS, Magdeburg, Germany, to DCD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erin M. Schuman or Daniela C. Dieterich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Landgraf, P., Antileo, E.R., Schuman, E.M., Dieterich, D.C. (2015). BONCAT: Metabolic Labeling, Click Chemistry, and Affinity Purification of Newly Synthesized Proteomes. In: Gautier, A., Hinner, M. (eds) Site-Specific Protein Labeling. Methods in Molecular Biology, vol 1266. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2272-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2272-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2271-0

  • Online ISBN: 978-1-4939-2272-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics