Site-Specific Biotinylation of Purified Proteins Using BirA

  • Michael Fairhead
  • Mark HowarthEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1266)


The binding between biotin and streptavidin or avidin is one of the strongest known non-covalent biological interactions. The (strept)avidin-biotin interaction has been widely used for decades in biological research and biotechnology. Therefore labeling of purified proteins by biotin is a powerful way to achieve protein capture, immobilization, and functionalization, as well as multimerizing or bridging molecules. Chemical biotinylation often generates heterogeneous products, which may have impaired function. Enzymatic biotinylation with E. coli biotin ligase (BirA) is highly specific in covalently attaching biotin to the 15 amino acid AviTag peptide, giving a homogeneous product with high yield. AviTag can conveniently be added genetically at the N-terminus, C-terminus, or in exposed loops of a target protein. We describe here procedures for AviTag insertion by inverse PCR, purification of BirA fused to glutathione-S-transferase (GST-BirA) from E. coli, BirA biotinylation of purified protein, and gel-shift analysis by SDS-PAGE to quantify the extent of biotinylation.

Key words

Neutravidin Streptavidin-biotin Femtomolar Nanotechnology Bionanotechnology 



This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC). We thank Jayati Jain (Howarth laboratory) for providing Fig. 5.


  1. 1.
    Chapman-Smith A, Cronan JE Jr (1999) In vivo enzymatic protein biotinylation. Biomol Eng 16:119–125PubMedCrossRefGoogle Scholar
  2. 2.
    Green NM (1990) Avidin and streptavidin. Methods Enzymol 184:51–67PubMedCrossRefGoogle Scholar
  3. 3.
    Sano T, Vajda S, Cantor CR (1998) Genetic engineering of streptavidin, a versatile affinity tag. J Chromatogr B Biomed Sci Appl 715:85–91PubMedCrossRefGoogle Scholar
  4. 4.
    Cronan JE Jr (1990) Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem 265:10327–10333PubMedGoogle Scholar
  5. 5.
    Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8:921–929PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    de Boer E et al (2003) Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 100:7480–7485PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Parrott MB, Barry MA (2001) Metabolic biotinylation of secreted and cell surface proteins from mammalian cells. Biochem Biophys Res Commun 281:993–1000PubMedCrossRefGoogle Scholar
  8. 8.
    Howarth M, Takao K, Hayashi Y, Ting AY (2005) Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 102:7583–7588PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Yang J, Jaramillo A, Shi R, Kwok WW, Mohanakumar T (2004) In vivo biotinylation of the major histocompatibility complex (MHC) class II/peptide complex by coexpression of BirA enzyme for the generation of MHC class II/tetramers. Hum Immunol 65:692–699PubMedCrossRefGoogle Scholar
  10. 10.
    Ooi SL, Henikoff JG, Henikoff S (2010) A native chromatin purification system for epigenomic profiling in Caenorhabditis elegans. Nucleic Acids Res 38:e26PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Howarth M, Ting AY (2008) Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat Protoc 3:534–545PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Sims S, Willberg C, Klenerman P (2010) MHC-peptide tetramers for the analysis of antigen-specific T cells. Expert Rev Vaccines 9:765–774PubMedCrossRefGoogle Scholar
  13. 13.
    Valadon P et al (2010) Designed auto-assembly of nanostreptabodies for rapid tissue-specific targeting in vivo. J Biol Chem 285:713–722PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Williams JG et al (2008) An artificial processivity clamp made with streptavidin facilitates oriented attachment of polymerase-DNA complexes to surfaces. Nucleic Acids Res 36:e121PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Rakshit S, Zhang Y, Manibog K, Shafraz O, Sivasankar S (2012) Ideal, catch, and slip bonds in cadherin adhesion. Proc Natl Acad Sci U S A 109:18815–18820PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Jain J, Veggiani G, Howarth M (2013) Cholesterol loading and ultrastable protein interactions determine the level of tumor marker required for optimal isolation of cancer cells. Cancer Res 73:2310–2321PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Sung K, Maloney MT, Yang J, Wu C (2011) A novel method for producing mono-biotinylated, biologically active neurotrophic factors: an essential reagent for single molecule study of axonal transport. J Neurosci Methods 200:121–128PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Viens A et al (2008) Use of protein biotinylation in vivo for immunoelectron microscopic localization of a specific protein isoform. J Histochem Cytochem 56:911–919PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Wu SC, Wong SL (2004) Development of an enzymatic method for site-specific incorporation of desthiobiotin to recombinant proteins in vitro. Anal Biochem 331:340–348PubMedCrossRefGoogle Scholar
  20. 20.
    Chen I, Howarth M, Lin W, Ting AY (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2:99–104PubMedCrossRefGoogle Scholar
  21. 21.
    Slavoff SA, Chen I, Choi YA, Ting AY (2008) Expanding the substrate tolerance of biotin ligase through exploration of enzymes from diverse species. J Am Chem Soc 130:1160–1162PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Uttamapinant C et al (2010) A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl Acad Sci U S A 107:10914–10919PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Howarth M et al (2006) A monovalent streptavidin with a single femtomolar biotin binding site. Nat Methods 3:267–273PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Chivers CE et al (2010) A streptavidin variant with slower biotin dissociation and increased mechanostability. Nat Methods 7:391–393PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Chivers CE, Koner AL, Lowe ED, Howarth M (2011) How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer. Biochem J 435:55–63PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Lau PN, Cheung P (2013) Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity. Nucleic Acids Res 41:e49PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Liu DS, Loh KH, Lam SS, White KA, Ting AY (2013) Imaging trans-cellular neurexin-neuroligin interactions by enzymatic probe ligation. PLoS One 8:e52823PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6:56–68PubMedCrossRefGoogle Scholar
  29. 29.
    Steiner FA, Talbert PB, Kasinathan S, Deal RB, Henikoff S (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res 22:766–777PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Cronan JE (2005) Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase. J Nutr Biochem 16:416–418PubMedCrossRefGoogle Scholar
  31. 31.
    Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Martell JD et al (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30:1143PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Gallivan JP, Lester HA, Dougherty DA (1997) Site-specific incorporation of biotinylated amino acids to identify surface-exposed residues in integral membrane proteins. Chem Biol 4:739–749PubMedCrossRefGoogle Scholar
  34. 34.
    Watanabe T, Muranaka N, Iijima I, Hohsaka T (2007) Position-specific incorporation of biotinylated non-natural amino acids into a protein in a cell-free translation system. Biochem Biophys Res Commun 361:794–799PubMedCrossRefGoogle Scholar
  35. 35.
    Yoshihara HA, Mahrus S, Wells JA (2008) Tags for labeling protein N-termini with subtiligase for proteomics. Bioorg Med Chem Lett 18:6000–6003PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lesaicherre ML, Lue RYP, Chen GYJ, Zhu Q, Yao SQ (2002) Intein-mediated biotinylation of proteins and its application in a protein microarray. J Am Chem Soc 124:8768–8769PubMedCrossRefGoogle Scholar
  37. 37.
    Carvajal-Vallejos P, Pallisse R, Mootz HD, Schmidt SR (2012) Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J Biol Chem 287:28686–28696PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Shah NH, Dann GP, Vila-Perello M, Liu Z, Muir TW (2012) Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J Am Chem Soc 134:11338–11341PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 3:707–708PubMedCrossRefGoogle Scholar
  40. 40.
    Zakeri B et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109:E690–E697PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Lim KH, Huang H, Pralle A, Park S (2013) Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnol Bioeng 110:57–67PubMedCrossRefGoogle Scholar
  42. 42.
    O’Callaghan CA et al (1999) BirA enzyme: production and application in the study of membrane receptor-ligand interactions by site-specific biotinylation. Anal Biochem 266:9–15PubMedCrossRefGoogle Scholar
  43. 43.
    Gama L, Breitwieser GE (2002) Generation of epitope-tagged proteins by inverse polymerase chain reaction mutagenesis. Methods Mol Biol 182:77–83PubMedGoogle Scholar
  44. 44.
    Chiu J, March PE, Lee R, Tillett D (2004) Site-directed, ligase-independent mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res 32:e174PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Saviranta P, Haavisto T, Rappu P, Karp M, Lovgren T (1998) In vitro enzymatic biotinylation of recombinant fab fragments through a peptide acceptor tail. Bioconjug Chem 9:725–735PubMedCrossRefGoogle Scholar
  46. 46.
    Cull MG, Schatz PJ (2000) Biotinylation of proteins in vivo and in vitro using small peptide tags. Methods Enzymol 326:430–440PubMedCrossRefGoogle Scholar
  47. 47.
    Marttila AT et al (2000) Recombinant NeutraLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Lett 467:31–36PubMedCrossRefGoogle Scholar
  48. 48.
    Schatz PJ (1993) Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N Y) 11:1138–1143CrossRefGoogle Scholar
  49. 49.
    Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–129PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Brown MT et al (2012) Flagellar hook flexibility is essential for bundle formation in swimming Escherichia coli cells. J Bacteriol 194:3495–3501PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Bates IR et al (2006) Membrane lateral diffusion and capture of CFTR within transient confinement zones. Biophys J 91:1046–1058PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Lau PW, Potter CS, Carragher B, MacRae IJ (2012) DOLORS: versatile strategy for internal labeling and domain localization in electron microscopy. Structure 20:1995–2002PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Li Y, Sousa R (2012) Expression and purification of E. coli BirA biotin ligase for in vitro biotinylation. Protein Expr Purif 82:162–167PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations