An Ex Vivo Model for Studying Mitochondrial Trafficking in Neurons

  • Helena Bros
  • Raluca Niesner
  • Carmen Infante-Duarte
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1264)

Abstract

Distribution of mitochondria throughout the cytoplasm is necessary for cellular function and health. Due to their unique, highly polarized morphology, neurons are particularly vulnerable to defects of mitochondrial transport, and its disruption can contribute to neuropathology. In this chapter, we present an ex vivo method for monitoring mitochondrial transport within myelinated sensory and motor axons from spinal nerve roots. This approach can be used to investigate mitochondrial behavior under a number of experimental conditions, e.g., by applying ion channel modulators, ionophores, or toxins, as well as for testing the therapeutic potential of new strategies targeting axonal mitochondrial dynamics.

Key words

Mitochondrial transport Mitochondrial trafficking Axonal transport Mitochondria live imaging Spinal nerve roots Ex vivo explants 

Notes

Acknowledgments

This work was supported by a fellowship from La Caixa and the Deutscher Akademischer Austauschdienst to H. Bros. We thank the JIMI network for infrastructural imaging support and J. Millward for reading the manuscript.

References

  1. 1.
    Gotow T, Miyaguchi K, Hashimoto PH (1991) Cytoplasmic architecture of the axon terminal: filamentous strands specifically associated with synaptic vesicles. Neuroscience 40:587–598PubMedCrossRefGoogle Scholar
  2. 2.
    Fabricius C, Berthold CH, Rydmark M (1993) Axoplasmic organelles at nodes of Ranvier. II. Occurrence and distribution in large myelinated spinal cord axons of the adult cat. J Neurocytol 22:941–954PubMedCrossRefGoogle Scholar
  3. 3.
    Morris RL, Hollenbeck PJ (1993) The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 104(Pt 3):917–927PubMedGoogle Scholar
  4. 4.
    Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Overly CC, Rieff HI, Hollenbeck PJ (1996) Organelle motility and metabolism in axons vs. dendrites of cultured hippocampal neurons. J Cell Sci 109(Pt 5):971–980PubMedGoogle Scholar
  6. 6.
    Miller KE, Sheetz MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117:2791–2804PubMedCrossRefGoogle Scholar
  7. 7.
    Ligon LA, Steward O (2000) Movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol 427:340–350PubMedCrossRefGoogle Scholar
  8. 8.
    Wang X, Schwarz TL (2009) The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136:163–174PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    De Vos KJ, Chapman AL, Tennant ME et al (2007) Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 16:2720–2728PubMedCrossRefGoogle Scholar
  10. 10.
    Pigino G, Morfini G, Pelsman A et al (2003) Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci 23:4499–4508PubMedGoogle Scholar
  11. 11.
    Rui Y, Tiwari P, Xie Z et al (2006) Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons. J Neurosci 26:10480–10487PubMedCrossRefGoogle Scholar
  12. 12.
    Trushina E, Dyer RB, Badger JD II et al (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 24:8195–8209PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Baloh RH, Schmidt RE, Pestronk A et al (2007) Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci 27:422–430PubMedCrossRefGoogle Scholar
  14. 14.
    Rintoul GL, Bennett VJ, Papaconstandinou NA et al (2006) Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. J Neurochem 97:800–806PubMedCrossRefGoogle Scholar
  15. 15.
    Fang C, Bourdette D, Banker G (2012) Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases. Mol Neurodegener 7:29PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Misgeld T, Kerschensteiner M, Bareyre FM et al (2007) Imaging axonal transport of mitochondria in vivo. Nat Methods 4:559–561PubMedCrossRefGoogle Scholar
  17. 17.
    Plucinska G, Paquet D, Hruscha A et al (2012) In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci 32:16203–16212PubMedCrossRefGoogle Scholar
  18. 18.
    Bros H, Millward JM, Paul F et al (2014) Oxidative damage to mitochondria at the nodes of Ranvier precedes axon degeneration in ex vivo transected axons. Exp Neurol 261:127–35Google Scholar
  19. 19.
    Andrews S, Gilley J, Coleman MP (2010) Difference Tracker: ImageJ plugins for fully automated analysis of multiple axonal transport parameters. J Neurosci Methods 193:281–287PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Helena Bros
    • 1
    • 2
    • 3
  • Raluca Niesner
    • 4
  • Carmen Infante-Duarte
    • 1
    • 2
  1. 1.Institute for Medical ImmunologyCharité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular MedicineBerlinGermany
  3. 3.NeuroCure Clinical Research CenterCharité-Universitätsmedizin BerlinBerlinGermany
  4. 4.Deutsches Rheuma-ForschungszentrumBerlinGermany

Personalised recommendations