High-Throughput Real-Time Analysis of Cell Oxygenation Using Intracellular Oxygen-Sensitive Probes

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1264)

Abstract

Knowledge of in situ oxygenation of cells in 2D and 3D cultures offers important insights into the impact of oxygen on cellular function. Here we outline how such measurements can be performed in 2D cultures of adherent cells and also in cells cultured on 3D scaffolds. Measurements are performed on conventional time-resolved fluorescence plate readers using the intracellular oxygen-sensitive probe MitoXpress®-Intra. We also illustrate how the impact of drug treatment on cell oxygenation can be assessed and how the link between oxygenation and glycolytic metabolism can be examined.

Key words

Hypoxia Mitochondrial function Cell metabolism Oxidative phosphorylation Time-resolved fluorescence Intracellular oxygen Oxygen-sensitive probe Oxygenation Electron transport chain High throughput 

References

  1. 1.
    Michael RD, Gyorgy S (2010) Roles of mitochondria in human disease. Essays Biochem 47:115–137CrossRefGoogle Scholar
  2. 2.
    Gottlieb R, Quarato G, Abel ED (2012) Mitochondria in cardiac disease. In: Patterson C, Willis MS (eds) Translational cardiology, Molecular and translational medicine. Humana, Totowa, NJ, pp 63–82CrossRefGoogle Scholar
  3. 3.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795PubMedCrossRefGoogle Scholar
  4. 4.
    Lenihan CR, Taylor CT (2013) The impact of hypoxia on cell death pathways. Biochem Soc Trans 41(2):657–663PubMedCrossRefGoogle Scholar
  5. 5.
    Taylor CT, Moncada S (2010) Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol 30(4):643–647PubMedCrossRefGoogle Scholar
  6. 6.
    Sung HJ et al (2010) Mitochondrial respiration protects against oxygen-associated DNA damage. Nat Commun 1:5PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Toussaint O, Weemaels G, Debacq-Chainiaux F, Scharffetter-Kochanek K, Wlaschek M (2011) Artefactual effects of oxygen on cell culture models of cellular senescence and stem cell biology. J Cell Physiol 226(2):315–321PubMedCrossRefGoogle Scholar
  8. 8.
    Hynes J, Floyd S, Soini AE, O’Connor R, Papkovsky DB (2003) Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J Biomol Screen 8(3):264–272PubMedCrossRefGoogle Scholar
  9. 9.
    O’Riordan TC et al (2007) Sensing intracellular oxygen using near-infrared phosphorescent probes and live-cell fluorescence imaging. Am J Physiol Regul Integr Comp Physiol 292:R1613–R1620PubMedCrossRefGoogle Scholar
  10. 10.
    Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, New York, NYGoogle Scholar
  11. 11.
    Hynes J et al (2009) In vitro analysis of cell metabolism using a long-decay pH-sensitive lanthanide probe and extracellular acidification assay. Anal Biochem 390(1):21–28PubMedCrossRefGoogle Scholar
  12. 12.
    Fercher A, Borisov SM, Zhdanov AV, Klimant I, Papkovsky DB (2011) Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS Nano 5(7):5499–5508PubMedCrossRefGoogle Scholar
  13. 13.
    Zhdanov AV et al (2010) Extracellular calcium depletion transiently elevates oxygen consumption in neurosecretory PC12 cells through activation of mitochondrial Na+/Ca2+ exchange. Biochim Biophys Acta Bioenerg 1797(9):1627–1637CrossRefGoogle Scholar
  14. 14.
    Hynes J, Natoli E, Will Y (2009) Fluorescent pH and oxygen probes of the assessment of mitochondrial toxicity in isolated mitochondria and whole cells. In: Maines M, Costa LG, Hodson E, Reed JC (eds) Current protocols in toxicology. Wiley, New York, NY, pp 40:42.16.41–42.16.22Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Luxcel Biosciences Ltd., BioInnovation Centre, UCCCorkIreland

Personalised recommendations