Skip to main content

Live-Cell Assessment of Mitochondrial Reactive Oxygen Species Using Dihydroethidine

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1264))

Abstract

Reactive oxygen species (ROS) play an important role in both physiology and pathology. Mitochondria are an important source of the primary ROS superoxide. However, accurate detection of mitochondrial superoxide especially in living cells remains a difficult task. Here, we describe a method and the pitfalls to detect superoxide in both mitochondria and the entire cell using dihydroethidium (HEt) and live-cell microscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

FCCP:

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

HEt:

Dihydroethidium

HT:

HEPES-Tris

mito-HEt:

Mito-dihydroethidium

ROS:

Reactive oxygen species

TPP:

Triphenylphosphonium

Δψ:

Mitochondrial membrane potential

References

  1. Finkel T (2012) Signal transduction by mitochondrial oxidants. J Biol Chem 287:4434–4440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Murphy MP, Holmgren A, Larsson NG (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13:361–366

    Article  CAS  PubMed  Google Scholar 

  3. Distelmaier F, Valsecchi F, Forkink M et al (2012) Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells. Antioxid Redox Signal 17:1657–1669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Brown GC, Borutaite V (2012) There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12:1–4

    Article  CAS  PubMed  Google Scholar 

  5. Zhou L, Aon M, Almas T et al (2010) A reaction–diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol 6:e1000657

    Article  PubMed Central  PubMed  Google Scholar 

  6. Tormos KV, Anso E, Hamanaka RB et al (2011) Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab 14:537–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Murphy M (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wang W, Fang H, Groom L et al (2008) Superoxide flashes in single mitochondria. Cell 134:279–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Pouvreau S (2010) Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently. PLoS One 5:e13035

    Article  PubMed Central  PubMed  Google Scholar 

  10. Fang H, Chen M, Ding Y et al (2011) Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals. Cell Res 21:1295–1304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Muller FL (2009) A critical evaluation of cpYFP as a probe for superoxide. Free Radic Biol Med 47:1779–1780

    Article  CAS  PubMed  Google Scholar 

  12. Schwarzländer M, Murphy MP, Duchen MR et al (2012) Mitochondrial “flashes”: a radical concept repHined. Trends Cell Biol 22:503–508

    Article  PubMed  Google Scholar 

  13. Wei-Lapierre L, Gong G, Gerstner BJ et al (2013) Respective contribution of mitochondrial superoxide and pH to Mt-cpYFP flash activity. J Biol Chem 288:10567–10577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zhao H, Kalivendi S, Zhang H et al (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34:1359–1368

    Article  CAS  PubMed  Google Scholar 

  15. Zhao H, Joseph J, Fales HM et al (2005) Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci U S A 102:5727–5732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Robinson KM, Janes MS, Pehar M et al (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103:15038–15043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Benov L, Sztejnberg L, Fridovich I (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med 25:826–831

    Article  CAS  PubMed  Google Scholar 

  18. Ince C, Beekman RE, Verschragen G (1990) A micro-perfusion chamber for single-cell fluorescence measurements. J Immunol Methods 128:227–234

    Article  CAS  PubMed  Google Scholar 

  19. Forkink M, Smeitink JAM, Brock R et al (2010) Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochim Biophys Acta 1797:1034–1044

    Article  CAS  PubMed  Google Scholar 

  20. Koopman W, Verkaart S, Visch H et al (2005) Inhibition of complex I of the electron transport chain causes O2-mediated mitochondrial outgrowth. Am J Physiol Cell Physiol 288:C1440–C1450

    Article  CAS  PubMed  Google Scholar 

  21. Zielonka J, Vasquez-Vivar J, Kalyanaraman B (2008) Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nat Protoc 3:8–21

    Article  CAS  PubMed  Google Scholar 

  22. Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48:983–1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Netherlands Organization for Scientific Research (NWO, No: 911-02-008), the Energy4All Foundation, the NWO Centers for Systems Biology Research initiative (CSBR09/013V), and a grant from the Institute for Genetic and Metabolic Disease (IGMD) of the Radboud University Medical Center (RUMC) to W.J.H.K. We are grateful to Dr.A. S. De Jong (Dept. of Biochemistry, RUMC) for performing the HEt and mito-HEt experiments on human skin fibroblasts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner J. H. Koopman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Forkink, M., Willems, P.H.G.M., Koopman, W.J.H., Grefte, S. (2015). Live-Cell Assessment of Mitochondrial Reactive Oxygen Species Using Dihydroethidine. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1264. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2257-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2257-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2256-7

  • Online ISBN: 978-1-4939-2257-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics