Skip to main content

Use of the Zebrafish Model to Understand Behavioral Disorders Associated with Altered Oxytocin System Development: Implications for Autism and Prader–Willi Syndrome

  • Protocol
  • First Online:
Organism Models of Autism Spectrum Disorders

Part of the book series: Neuromethods ((NM,volume 100))

  • 1308 Accesses

Abstract

Zebrafish are a promising new model for the study of neurological development. The effects of small molecule exposure, genetic manipulation, mutations, or other treatments can be observed on a morphological level in the developing organism. In addition, by utilizing transgenic fish lines that express fluorescent marker proteins in specific neuronal subpopulations, changes in brain development can be monitored at a cellular level. Moreover, after visualizing brain development, consequent alterations in behavior can be measured in the adult fish. In 2003, Tropepe and Sive first proposed using zebrafish as a model for autism spectrum disorders (ASD), using a genetic screen to investigate reduced ventricular development, an ASD endophenotpye (Tropepe and Sive, Genes Brain Behav 2:268–281, 2003). Since that initial proposal, numerous studies have proven zebrafish to be a useful and unique model for the study of numerous aspects of ASD, Prader–Willi syndrome, and related disorders. Dysfunction of the oxytocin system has been implicated in all three of these disorders. We have developed transgenic zebrafish expressing green florescent protein in oxytocin-producing neurons. This enables visualization of perturbations in the oxytocinergic system, allowing the detection of new connections and structures, and correlation to altered adult behavior. This chapter presents a general protocol for utilizing zebrafish for studies of neurodevelopmental disorders based on pharmacologic manipulation and observation of embryonic brain development, followed by behavioral analyses once the fish mature. These procedures assume no specialized facilities or equipment for zebrafish studies, and are intended to provide an entry point for preliminary studies conducted by investigators with little to no experience with this amazing model organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kabashi E, Champagne N, Brustein E, Drapeau P (2010) In the swim of things: recent insights to neurogenetic disorders from zebrafish. Trends Genet 26(8):373–381

    Article  CAS  PubMed  Google Scholar 

  2. Kokel D, Bryan J, Laggner C, White R, Cheung CYJ, Mateus R et al (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6(3):231–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Engeszer RE, Wang G, Ryan MJ, Parichy DM (2008) Sex-specific perceptual spaces for a vertebrate basal social aggregative behavior. Proc Natl Acad Sci U S A 105(3):929–933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF et al (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205(1):38–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Blaser R, Gerlai R (2006) Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods RID A-3341-2012. Behav Res Methods 38(3):456–469

    Article  PubMed  Google Scholar 

  6. Lee H, Macbeth AH, Pagani JH, Young WS (2009) Oxytocin: the great facilitator of life RID A-9333-2009. Prog Neurobiol 88(2):127–151

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Hammock EAD, Young LJ (2006) Oxytocin, vasopressin and pair bonding: implications for autism RID G-1897-2011. Philos Trans R Soc B Biol Sci 361(1476):2187–2198

    Article  CAS  Google Scholar 

  8. Insel TR (2010) The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65(6):768–779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Striepens N, Kendrick KM, Maier W, Hurlemann R (2011) Prosocial effects of oxytocin and clinical evidence for its therapeutic potential. Front Neuroendocrinol 32(4):426–450

    Article  CAS  PubMed  Google Scholar 

  10. APA (2000) Diagnostic and statistical manual of mental disorders, 4th edn, text revision (DSM-IV-TR). American Psychiatric Association, Washington, DC

    Google Scholar 

  11. Dimitropoulos A, Schultz RT (2007) Autistic-like symptomatology in Prader-Willi syndrome: a review of recent findings. Curr Psychiatry Rep 9(2):159–164

    Article  PubMed  Google Scholar 

  12. Insel T, O’Brien D, Leckman J (1999) Oxytocin, vasopressin, and autism: is there a connection? Biol Psychiatry 45(2):145–157

    Article  CAS  PubMed  Google Scholar 

  13. Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L et al (2007) Oxytocin increases retention of social cognition in autism. Biol Psychiatry 61(4):498–503

    Article  CAS  PubMed  Google Scholar 

  14. Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ et al (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67(7):692–694

    Article  CAS  PubMed  Google Scholar 

  15. Andari E, Duhamel J, Zalla T, Herbrecht E, Leboyer M, Sirigu A (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci U S A 107(9):4389–4394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tauber M, Mantoulan C, Copet P, Jauregui J, Demeer G, Diene G et al (2011) Oxytocin may be useful to increase trust in others and decrease disruptive behaviours in patients with Prader-Willi syndrome: a randomised placebo-controlled trial in 24 patients. Orphanet J Rare Dis 6:47

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mattson SN, Crocker N, Nguyen TT (2011) Fetal alcohol spectrum disorders: neuropsychological and behavioral features. Neuropsychol Rev 21(2):81–101

    Article  PubMed Central  PubMed  Google Scholar 

  18. May PA, Gossage JP, Kalberg WO, Robinson LK, Buckley D, Manning M et al (2009) Prevalence and epidemiologic characteristics of fasd from various research methods with an emphasis on recent in-school studies. Dev Disabil Res Rev 15(3):176–192

    Article  PubMed  Google Scholar 

  19. Buske C, Gerlai R (2011) Early embryonic ethanol exposure impairs shoaling and the dopaminergic and serotoninergic systems in adult zebrafish. Neurotoxicol Teratol 33:698–707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Echevarria DJ, Toms CN, Jouandot DJ (2011) Alcohol-induced behavior change in zebrafish models. Rev Neurosci 22(1):85–93

    Article  CAS  PubMed  Google Scholar 

  21. Fernandes Y, Gerlai R (2009) Long-term behavioral changes in response to early developmental exposure to ethanol in zebrafish. Alcohol Clin Exp Res 33(4):601–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kurta A, Palestis BG (2010) Effects of ethanol on the shoaling behavior of zebrafish (danio rerio). Dose Response 8(4):527–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Unger J, Glasgow E (2003) Expression of isotocin-neurophysin mRNA in developing zebratish. Gene Expr Patterns 3(1):105–108

    Article  CAS  PubMed  Google Scholar 

  24. Eaton JL, Holmqvist B, Glasgow E (2008) Ontogeny of vasotocin-expressing cells in zebrafish: selective requirement for the transcriptional regulators orthopedia and single-minded 1 in the preoptic area. Dev Dyn 237(4):995–1005

    Article  CAS  PubMed  Google Scholar 

  25. Eaton JL, Glasgow E (2006) The zebrafish bHLH PAS transcriptional regulator, single-minded 1 (sim1), is required for isotocin cell development. Dev Dyn 235(8):2071–2082

    Article  CAS  PubMed  Google Scholar 

  26. Eaton JL, Glasgow E (2007) Zebrafish orthopedia (otp) is required for isotocin cell development. Dev Genes Evol 217(2):149–158

    Article  CAS  PubMed  Google Scholar 

  27. Braida D, Donzelli A, Martucci R, Capurro V, Busnelli M, Chini B et al (2011) Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish. Psychopharmacology (Berl) 220:319–330

    Article  Google Scholar 

  28. Kawakami K, Abe G, Asada T, Asakawa K, Fukuda R, Ito A et al (2010) zTrap: Zebrafish gene trap and enhancer trap database. BMC Dev Biol 10:105

    Article  PubMed Central  PubMed  Google Scholar 

  29. Amsterdam A, Becker T (2005) Transgenes as screening tools to probe and manipulate the zebrafish genome. Dev Dyn 234(2):255–268

    Article  CAS  PubMed  Google Scholar 

  30. Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T et al (2007) Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 4(4):323–326

    CAS  PubMed  Google Scholar 

  31. Saverino C, Gerlai R (2008) The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191(1):77–87

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wright D, Krause J (2006) Repeated measures of shoaling tendency in zebrafish (danio rerio) and other small teleost fishes RID C-2750-2011. Nat Protoc 1(4):1828–1831

    Article  CAS  PubMed  Google Scholar 

  33. Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM et al (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish RID B-3719-2010. Nat Protoc 5(11):1786–1799

    Article  CAS  PubMed  Google Scholar 

  34. Peravali R, Gehrig J, Giselbrecht S, Luetjohann DS, Hadzhiev Y, Mueller F et al (2011) Automated feature detection and imaging for high-resolution screening of zebrafish embryos RID D-8519-2011. BioTechniques 50(5):319–324

    CAS  PubMed  Google Scholar 

  35. Vogt A, Cholewinski A, Shen X, Nelson SG, Lazo JS, Tsang M et al (2009) Automated image-based phenotypic analysis in zebrafish embryos. Dev Dyn 238(3):656–663

    Article  PubMed Central  PubMed  Google Scholar 

  36. Hurd M, Debruyne J, Straume M, Cahill G (1998) Circadian rhythms of locomotor activity in zebrafish. Physiol Behav 65(3):465–472

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Glasgow Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Johnston, N., Glasgow, E. (2015). Use of the Zebrafish Model to Understand Behavioral Disorders Associated with Altered Oxytocin System Development: Implications for Autism and Prader–Willi Syndrome. In: Roubertoux, P. (eds) Organism Models of Autism Spectrum Disorders. Neuromethods, vol 100. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2250-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2250-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2249-9

  • Online ISBN: 978-1-4939-2250-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics