An Overview of Methods Used in Neurogenomics and Their Applications

  • Kewal K. Jain
Part of the Neuromethods book series (NM, volume 97)


This chapter is an introduction to and an overview of neurogenomics—an analysis of genes in the nervous system and their application for diagnosis as well as potential therapeutics of disorders of the nervous system. The most important technologies are those for sequencing. Traditional as well as new techniques are described briefly including next-generation sequencing. Important applications include discovery of genomic biomarkers, brain mapping as well as connectomics, molecular diagnostics, drug discovery, and potential new therapeutics for neurologic disorders. Knowledge of the genes relevant to the nervous system will improve gene therapies and RNA interference approaches for neurologic disorders. Overall it will contribute to development of personalized neurology.


Brain mapping Gene therapy Genes Genomics Molecular diagnostics Neurogenetics Neurogenomics Neuroproteomics Personalized neurology Sequencing 



Next-generation sequencing


Whole-genome sequencing


Whole-exome sequencing


Copy number variation


Single-nucleotide polymorphism


Single-molecule sequencing


  1. Al-Baradie RS. Dravet syndrome, what is new? Neurosciences (Riyadh). 2013;18(1):11–7.Google Scholar
  2. An N, Fleming AM, White HS, Burrows CJ. Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc Natl Acad Sci U S A. 2012;109:11504–9.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Anderson BN, Muthukumar M, Meller A. pH tuning of DNA translocation time through organically functionalized nanopores. ACS Nano. 2013;7:1408–14.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Anonymous. Method of the year 2013 (editorial). Nat Methods. 2014;11:1.Google Scholar
  5. Basu SN, Kollu R, Banerjee-Basu S. AutDB: a gene reference resource for autism research. Nucleic Acids Res. 2009;37(Database issue):D832–6.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bennett J, Hahn SH. Clinical molecular diagnosis of Wilson disease. Semin Liver Dis. 2011;31: 233–8.PubMedCrossRefGoogle Scholar
  7. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron. 2010;68:270–81.PubMedCrossRefGoogle Scholar
  8. Blaese RM, Culver KW, Anderson WF. The ADA human gene therapy protocol. Hum Gene Ther. 1990;1:331–62.PubMedCrossRefGoogle Scholar
  9. Blair DR, Lyttle CS, Mortensen JM, et al. A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk. Cell. 2013;155:70–80.PubMedCrossRefGoogle Scholar
  10. Bras JM, Singleton AB. Exome sequencing in Parkinson’s disease. Clin Genet. 2011;80:104–9.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bryant C, Giovanello KS, Ibrahim JG, et al. Mapping the genetic variation of regional brain volumes as explained by all common SNPs from the ADNI study. PLoS One. 2013;8(8):e71723.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chang S, Huang S, He J, et al. Electronic signatures of all four DNA nucleosides in a tunneling gap. Nano Lett. 2010;10:1070–5.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Clarke J, Wu HC, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4:265–70.PubMedCrossRefGoogle Scholar
  14. Cockroft SL, Chu J, Amorin M, Ghadiri MR. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J Am Chem Soc. 2008;130:818–20.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Cohen SN, Chang AC, Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972;69:2110–4.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Costello M, Pugh TJ, Fennell TJ, et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res. 2013;41:e67.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cross-Disorder Group of the Psychiatric Genomics Consortium, Genetic Risk Outcome of Psychosis (GROUP) Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.PubMedCentralCrossRefGoogle Scholar
  18. Csaki A, Garwe F, Steinbrück A, et al. A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas. Nano Lett. 2007;7:247–53.PubMedCrossRefGoogle Scholar
  19. de Ligt J, Willemsen MH, van Bon BW, et al. Diagnostic exome sequencing in persons with severe intellectual disability. NEJM. 2012;367:1921–9.PubMedCrossRefGoogle Scholar
  20. Derrington IM, Butler TZ, Collins MD, et al. Nanopore DNA sequencing with MspA. PNAS. 2010;107:16060–5.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dolled-Filhart MP, Lee Jr M, Ou-Yang CW, et al. Computational and bioinformatics frameworks for next-generation whole exome and genome sequencing. Sci World J. 2013;2013:730210. doi: 10.1155/2013/730210.CrossRefGoogle Scholar
  22. Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.PubMedCrossRefGoogle Scholar
  23. Epi4K Consortium, Epilepsy Phenome/Genome Project, Allen AS, Berkovic SF, Cossette P, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501:217–21.PubMedCrossRefGoogle Scholar
  24. Esfandyarpour H, Zheng B, Pease RF, Davis RW. Structural optimization for heat detection of DNA thermosequencing platform using finite element analysis. Biomicrofluidics. 2008;2:24102.PubMedCrossRefGoogle Scholar
  25. Ezkurdia I, Juan D, Rodriguez J, et al. Multiple evidence strands suggest that there may be as few as 19000 human protein-coding genes. Hum Mol Genet. 2014;23:5866–78.Google Scholar
  26. Fan HC, Gu W, Wang J, et al. Non-invasive prenatal measurement of the fetal genome. Nature. 2012;487:320–4.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Feero WG, Guttmacher AE, Collins FS. Genomic medicine – an updated primer. N Engl J Med. 2010;362:2001–11.PubMedCrossRefGoogle Scholar
  28. Feng L, Liu H, Liu Y, et al. Power of deep sequencing and agilent microarray for gene expression profiling study. Mol Biotechnol. 2010;45:101–10.PubMedCrossRefGoogle Scholar
  29. Flusberg BA, Webster DR, Lee JH, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7:461–5.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Ghosal S. Effect of salt concentration on the electrophoretic speed of a polyelectrolyte through a nanopore. Phys Rev Lett. 2007;98:238104.PubMedCrossRefGoogle Scholar
  31. Girirajan S, Rosenfeld JA, Coe BP, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med. 2012;367:1321–31.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Gratten J, Wray NR, Keller MC, Visscher PM. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci. 2014;17:782–90.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368:117–27.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Gusella JF, Wexler NS, Conneally PM, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983;306:234–8.PubMedCrossRefGoogle Scholar
  35. Han G, Sun J, Wang J, et al. Genomics in neurological disorders. Genomics Proteomics Bioinformatics. 2014;12:156–63.Google Scholar
  36. Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product on Duchenne muscular dystrophy locus. Cell. 1987;51:919–28.PubMedCrossRefGoogle Scholar
  37. Itan Y, Zhang SY, Vogt G, et al. The human gene connectome as a map of short cuts for morbid allele discovery. Proc Natl Acad Sci USA. 2013;110:5558–63.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Jahanshad N, Rajagopalan P, Hua X, et al. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity. Proc Natl Acad Sci U S A. 2013;110:4768–73.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Jain KK. Applied neurogenomics. Pharmacogenomics. 2001;2:143–53.PubMedCrossRefGoogle Scholar
  40. Jain KK. A handbook of biomarkers. New York: Springer; 2010.CrossRefGoogle Scholar
  41. Jain KK. Biochips/microarrays. Basel, Switzerland: Jain PharmaBiotech; 2014a.Google Scholar
  42. Jain KK. DNA sequencing. Basel: Jain PharmaBiotech; 2014b.Google Scholar
  43. Jain KK. Proteomics. Basel, Switzerland: Jain PharmaBiotech; 2014c.Google Scholar
  44. Kaper F, Swamy S, Klotzle B, et al. Whole-genome haplotyping by dilution, amplification, and sequencing. Proc Natl Acad Sci USA. 2013;110:5552–7.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Kitzman JO, Mackenzie AP, Adey A, et al. Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat Biotechnol. 2011;29:59–63.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Kuska B. Beer, Bethesda, and biology: how “genomics” came into being. J Natl Cancer Inst. 1998;90:93.PubMedCrossRefGoogle Scholar
  47. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Landouré G, Sullivan JM, Johnson JO, et al. Exome sequencing identifies a novel TRPV4 mutation in a CMT2C family. Neurology. 2012;79:192–4.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Lao KQ, Tang F, Barbacioru C, et al. mRNA-sequencing whole transcriptome analysis of a single cell on the SOLiD system. J Biomol Tech. 2009;20:266–71.PubMedCentralPubMedGoogle Scholar
  50. Leidinger P, Backes C, Deutscher S, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14:R78.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Lencz T, Guha S, Liu C, et al. Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder. Nat Commun. 2013;4:2739.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Lill CM. Recent advances and future challenges in the genetics of multiple sclerosis. Front Neurol. 2014;5:130.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Lister R, Mukamel EA, Nery JR, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341:1237905.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Liu H, He J, Tang J, et al. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science. 2010;327:64–7.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Lupski JR, Reid JG, Gonzaga-Jauregui C, et al. Whole-genome sequencing in a patient with Charcot-Marie-tooth neuropathy. NEJM. 2010;362:1181–91.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Maat J, Smith AJ. A method for sequencing restriction fragments with dideoxynucleoside triphosphates. Nucleic Acids Res. 1978;5:4537–45.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Magri F, Del Bo R, D’Angelo MG, et al. Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing. BMC Med Genet. 2011;12:37.Google Scholar
  58. Manrao EA, Derrington IM, Laszlo AH, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol. 2012;30:349–53.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Matuszek G, Talebizadeh Z. Autism Genetic Database (AGD): a comprehensive database including autism susceptibility gene-CNVs integrated with known noncoding RNAs and fragile sites. BMC Med Genet. 2009;10:102.PubMedCentralPubMedCrossRefGoogle Scholar
  60. McCaughan F, Dear PH. Single-molecule genomics. J Pathol. 2010;220:297–306.PubMedGoogle Scholar
  61. Medland SE, Jahanshad N, Neale BM, Thompson PM. Whole-genome analyses of whole-brain data: working within an expanded search space. Nat Neurosci. 2014;17:791–800.PubMedCrossRefGoogle Scholar
  62. Mefford HC. Diagnostic exome sequencing –are we there yet? NEJM. 2012;367:1951–3.PubMedCrossRefGoogle Scholar
  63. Mende S, Storch A, Reichmann H. Gene expression profiling of classic mitochondrial disorders. Its value in finding therapeutic strategies. Nervenarzt. 2007;78:1155–9.PubMedCrossRefGoogle Scholar
  64. Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11:31–46.PubMedCrossRefGoogle Scholar
  65. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–73.PubMedCrossRefGoogle Scholar
  66. Németh AH, Kwasniewska AC, Lise S, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013;136:3106–18.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–6.PubMedCentralPubMedCrossRefGoogle Scholar
  68. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–21.PubMedCentralPubMedGoogle Scholar
  69. Oksenberg JR. Decoding multiple sclerosis: an update on genomics and future directions. Expert Rev Neurother. 2013;13(12 Suppl):11–9.PubMedCrossRefGoogle Scholar
  70. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87–98.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Parikshak NN, Luo R, Zhang A, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155:1008–21.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Petrovski S, Kwan P. Unraveling the genetics of common epilepsies: approaches, platforms, and caveats. Epilepsy Behav. 2013;26:229–33.PubMedCrossRefGoogle Scholar
  73. Pinto D, Pagnamenta AT, Klei L, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466:368–72.PubMedCentralPubMedCrossRefGoogle Scholar
  74. Plagnol V, Nalls MA, Bras J, et al. A two-stage meta-analysis identifies several new loci for Parkinson’s disease. PLoS Genet. 2011;7(6):e1002142.CrossRefGoogle Scholar
  75. Reisner W, Larsen NB, Silahtaroglu A, et al. Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc Natl Acad Sci U S A. 2010;107:13294–9.PubMedCentralPubMedCrossRefGoogle Scholar
  76. Sandberg R. Entering the era of single-cell transcriptomics in biology and medicine. Nat Methods. 2014;11:22–4.PubMedCrossRefGoogle Scholar
  77. Schibel AE, Edwards T, Kawano R, et al. Quartz nanopore membranes for suspended bilayer ion channel recordings. Anal Chem. 2010;82:7259–66.PubMedCrossRefGoogle Scholar
  78. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.CrossRefGoogle Scholar
  79. Schmitt MW, Kennedy SR, Salk JJ, et al. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A. 2012;109:14508–13.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Seung S. Connectome: how the brain’s wiring makes us who we are. New York: Houghton Mifflin Harcourt; 2012.Google Scholar
  81. Sigurgeirsson B, Emanuelsson O, Lundeberg J. Analysis of stranded information using an automated procedure for strand specific RNA sequencing. BMC Genomics. 2014;15:631.PubMedCentralPubMedCrossRefGoogle Scholar
  82. Singer A, Wanunu M, Morrison W, et al. Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett. 2010;10:738–42.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98:503–17.PubMedCrossRefGoogle Scholar
  84. Stein LD. The case for cloud computing in genome informatics. Genome Biol. 2010;11:207.PubMedCentralPubMedCrossRefGoogle Scholar
  85. Streets AM, Zhang X, Cao C, et al. Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci U S A. 2014;111:7048–53.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Talkowski ME, Maussion G, Crapper L, et al. Disruption of a large intergenic noncoding RNA in subjects with neurodevelopmental disabilities. Am J Hum Genet. 2012;91:1128–34.PubMedCentralPubMedCrossRefGoogle Scholar
  87. Teague B, Waterman MS, Goldstein S, et al. High-resolution human genome structure by single-molecule analysis. PNAS. 2010;107:10848–53.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Tsuji S. The neurogenomics view of neurological diseases. JAMA Neurol. 2013;70:689–94.PubMedCrossRefGoogle Scholar
  89. Wang S, Yang Z, Ma JZ, et al. Introduction to deep sequencing and its application to drug addiction research with a focus on rare variants. Mol Neurobiol. 2014;49:601–14.PubMedCrossRefGoogle Scholar
  90. Wanunu M, Morrison W, Rabin Y, et al. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol. 2010;5:160–5.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Watson JD, Crick FHC. Genetic implications of the structure of deoxyribonucleic acid. Nature. 1953;171:964–9.PubMedCrossRefGoogle Scholar
  92. Wei R, Martin TG, Rant U, Dietz H. DNA origami gatekeepers for solid-state nanopores. Angew Chem Int Ed Engl. 2012;51:4864–7.PubMedCrossRefGoogle Scholar
  93. Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1995;13:19–50.CrossRefGoogle Scholar
  94. Wu CH, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature. 2012;488:499–503.PubMedCentralPubMedCrossRefGoogle Scholar
  95. Zheng J, Moorhead M, Weng L, et al. High-throughput, high-accuracy array-based resequencing. PNAS. 2009;106:6712–7.PubMedCentralPubMedCrossRefGoogle Scholar
  96. Zhu X, Need AC, Petrovski S, Goldstein DB. One gene, many neuropsychiatric disorders: lessons from Mendelian diseases. Nat Neurosci. 2014;17:773–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Jain PharmaBiotechBaselSwitzerland

Personalised recommendations