Skip to main content

High-Throughput Studies of Protein Shapes and Interactions by Synchrotron Small-Angle X-Ray Scattering

  • Protocol
  • First Online:
Structural Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1261))

Abstract

Solution-based small angle X-ray scattering (SAXS) affords the opportunity to extract accurate structural parameters and global shape information from diverse biological macromolecular systems. SAXS is an ideal complementary technique to other structural and biophysical methods but it can also be applied alone to access structural information that is otherwise unobtainable using high-resolution methods. Macromolecular structures ranging from kilodaltons to gigadaltons can be analyzed, which encompasses the size of most proteins and functional cellular complexes. The SAXS analysis is performed using only a few microliters of solution containing microgram quantities of purified material in sample environments that can be tailored to mimic physiological conditions or altered to suit a particular question. High-brilliance synchrotron X-ray sources and parallel advances in hardware and computing have reduced data acquisition times to the millisecond range and the application of automated methods have allowed data processing and low resolution shape modelling to be completed within minutes. These developments have paved the way for high-throughput studies that generate significant quantities of structural information over a short period of time. Here, we briefly consider the basics of SAXS and describe major methods and protocols employed in high-throughput SAXS studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanchet CE, Svergun DI (2013) Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution. Annu Rev Phys Chem 64:37–54

    Article  CAS  PubMed  Google Scholar 

  2. Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology—expanding the frontier while avoiding the pitfalls. Protein Sci 19(4):642–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496(7446):477–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Mertens HD, Svergun DI (2010) Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 172(1):128–141

    Article  CAS  PubMed  Google Scholar 

  5. Rambo RP, Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural systems biology. Annu Rev Biophys 42:415–441

    Article  CAS  PubMed  Google Scholar 

  6. Petoukhov MV, Svergun DI (2013) Applications of small-angle X-ray scattering to biomacromolecular solutions. Int J Biochem Cell Biol 45(2):429–437

    Article  CAS  PubMed  Google Scholar 

  7. Blobel J, Bernado P, Svergun DI et al (2009) Low-resolution structures of transient protein-protein complexes using small-angle X-ray scattering. J Am Chem Soc 131(12):4378–4386

    Article  CAS  PubMed  Google Scholar 

  8. Williamson TE, Craig BA, Kondrashkina E et al (2008) Analysis of self-associating proteins by singular value decomposition of solution scattering data. Biophys J 94(12):4906–4923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cho HS, Schotte F, Dashdorj N et al (2013) Probing anisotropic structure changes in proteins with picosecond time-resolved small-angle X-ray scattering. J Phys Chem B 117(49):15825–15832

    Article  CAS  PubMed  Google Scholar 

  10. Roessle M, Manakova E, Laure I et al (2000) Time-resolved small angle scattering: kinetics and structural data from proteins in solution. J Appl Cryst 33(1):548–551

    Article  CAS  Google Scholar 

  11. Vestergaard B, Groenning M, Roessle M et al (2007) A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 5(5):e134

    Article  PubMed Central  PubMed  Google Scholar 

  12. Graewert MA, Svergun DI (2013) Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS). Curr Opin Struct Biol 23(5):748–754

    Article  CAS  PubMed  Google Scholar 

  13. Grant TD, Luft JR, Wolfley JR et al (2011) Small angle X-ray scattering as a complementary tool for high-throughput structural studies. Biopolymers 95(8):517–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Pertea M, Salzberg SL (2010) Between a chicken and a grape: estimating the number of human genes. Genome Biol 11(5):206

    Article  PubMed Central  PubMed  Google Scholar 

  15. Uversky VN (2010) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010:568068

    Article  PubMed Central  PubMed  Google Scholar 

  16. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804(6):1231–1264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chouard T (2011) Structural biology: breaking the protein rules. Nature 471(7337):151–153

    Article  CAS  PubMed  Google Scholar 

  18. Bernado P, Svergun DI (2012) Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol Biosyst 8(1):151–167

    Article  CAS  PubMed  Google Scholar 

  19. Bernado P, Mylonas E, Petoukhov MV et al (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129(17):5656–5664

    Article  CAS  PubMed  Google Scholar 

  20. Webb B, Lasker K, Velazquez-Muriel J et al (2014) Modeling of proteins and their assemblies with the Integrative Modeling Platform. Methods Mol Biol 1091:277–295

    Article  PubMed  Google Scholar 

  21. Schneidman-Duhovny D, Kim SJ, Sali A (2012) Integrative structural modeling with small angle X-ray scattering profiles. BMC Struct Biol 12:17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Forster F, Webb B, Krukenberg KA et al (2008) Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies. J Mol Biol 382(4):1089–1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hammel M (2012) Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS). Eur Biophys J 41(10):789–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Rambo RP, Tainer JA (2010) Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Curr Opin Struct Biol 20(1):128–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pelikan M, Hura GL, Hammel M (2009) Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 28(2):174–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley, New York

    Google Scholar 

  27. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, London

    Google Scholar 

  28. Feigin LA, Svergun DI (1987) Structure analysis by small-angle x-ray and neutron scattering. Plenum, New York

    Book  Google Scholar 

  29. Svergun DI, Koch MHJ, Timmins PA, May RP (2013) Small angle X-ray and neutron scattering from solutions of biological macromolecules, 1st edn. Oxford University Press, New York

    Book  Google Scholar 

  30. Koch MH, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36(2):147–227

    Article  CAS  PubMed  Google Scholar 

  31. Jeffries CMJ, Trewhella J (2012) Small angle-scattering. In: Wall ME (ed) Quantitative biology: from molecular to cellular systems. CRC, Boca Raton, pp 113–152

    Google Scholar 

  32. Putnam CD, Hammel M, Hura GL et al (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40(3):191–285

    Article  CAS  PubMed  Google Scholar 

  33. Broennimann C, Eikenberry EF, Henrich B et al (2006) The PILATUS 1 M detector. J Synchrotron Radiation 13:120–130

    Article  CAS  Google Scholar 

  34. Orthaber D, Bergmann A, Glatter O (2000) SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J Appl Cryst 33:218–225

    Article  CAS  Google Scholar 

  35. Guinier A (1939) La diffraction des rayons X aux tres petits angles; application a l'etude de phenomenes ultramicroscopiques. Ann Phys (Paris) 12:161–237

    CAS  Google Scholar 

  36. Mylonas E, Svergun DI (2007) Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. J Appl Cryst 40:s245–s249

    Article  CAS  Google Scholar 

  37. Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Cryst 25:495–503

    Article  Google Scholar 

  38. Svergun DI, Semenyuk AV, Feigin LA (1988) Small-angle scattering data treatment by the regularization method. Acta Cryst A44:244–250

    Article  Google Scholar 

  39. Semenyuk AV, Svergun DI (1991) GNOM—a program package for small-angle scattering data processing. J Appl Cryst 24:537–540

    Article  Google Scholar 

  40. Glatter O (1977) A new method for the evaluation of small-angle scattering data. J Appl Cryst 10:415–421

    Article  Google Scholar 

  41. Bergmann A, Fritz G, Glatter O (2000) Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J Appl Cryst 33(5):1212–1216

    Article  CAS  Google Scholar 

  42. Jeffries CM, Lu Y, Hynson RM et al (2011) Human cardiac myosin binding protein C: structural flexibility within an extended modular architecture. J Mol Biol 414(5):735–748

    Article  CAS  PubMed  Google Scholar 

  43. Porod G (1982) General theory. In: Glatter O, Kratky O (eds) Small-angle X-ray scattering. Academic, London, pp 17–51

    Google Scholar 

  44. Fischer H, de Oliveira M, Napolitano HB et al (2010) The molecular weight of proteins in solution can be determined from a single SAXS measurement on a relative scale. J Appl Cryst 43:101–109

    Article  CAS  Google Scholar 

  45. Petoukhov MV, Franke D, Shkumatov AV et al (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Cryst 45(2):342–350

    Article  CAS  Google Scholar 

  46. Jacques DA, Guss JM, Svergun DI et al (2012) Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution. Acta Cryst D 68(6):620–626

    Article  CAS  Google Scholar 

  47. Stuhrmann H (1970) New method for determination of surface form and internal structure of dissolved globular proteins from small-angle X-ray measurements. Z Phys Chem Frankfurt 72:177–182

    Article  CAS  Google Scholar 

  48. Stuhrmann HB (1970) Interpretation of small-angle scattering functions of dilute solutions and gases. A representation of the structures related to a one-particle-scattering function. Acta Cryst A26:297–306

    Article  Google Scholar 

  49. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76(6):2879–2886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Svergun DI, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Cryst 28:768–773

    Article  CAS  Google Scholar 

  51. Petoukhov MV, Svergun DI (2005) Global rigid body modelling of macromolecular complexes against small-angle scattering data. Biophys J 89(2):1237–1250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Konarev PV, Petoukhov MV, Svergun DI (2001) MASSHA—a graphic system for rigid body modelling of macromolecular complexes against solution scattering data. J Appl Cryst 34:527–532

    Article  CAS  Google Scholar 

  53. Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Cryst 42:342–346

    Article  CAS  Google Scholar 

  54. Petoukhov MV, Svergun DI (2007) Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr Opin Struct Biol 17(5):562–571

    Article  CAS  PubMed  Google Scholar 

  55. Chacon P, Moran F, Diaz JF et al (1998) Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys J 74(6):2760–2775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Chacon P, Diaz JF, Moran F et al (2000) Reconstruction of protein form with X-ray solution scattering and a genetic algorithm. J Mol Biol 299(5):1289–1302

    Article  CAS  PubMed  Google Scholar 

  57. Svergun DI, Petoukhov MV, Koch MHJ (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80(6):2946–2953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Svergun DI, Volkov VV, Kozin MB et al (1996) New developments in direct shape determination from small-angle scattering 2. Uniqueness. Acta Cryst A52:419–426

    Article  CAS  Google Scholar 

  59. Vigil D, Gallagher SC, Trewhella J et al (2001) Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin. Biophys J 80(5):2082–2092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Walther D, Cohen FE, Doniach S (2000) Reconstruction of low-resolution three-dimensional density maps from one-dimensional small-angle X-ray solution scattering data for biomolecules. J Appl Cryst 33:350–363

    Article  CAS  Google Scholar 

  61. Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small angle scattering. J Appl Cryst 36:860–864

    Article  CAS  Google Scholar 

  62. Kozin MB, Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Cryst 34:33–41

    Article  CAS  Google Scholar 

  63. Franke D, Kikhney AG, Svergun DI (2012) Automated acquisition and analysis of small angle X-ray scattering data. Nucl Instrum Meth Phys Res Sect A 689:52–59

    Article  CAS  Google Scholar 

  64. Blanchet CE, Zozulya AV, Kikhney AG et al (2012) Instrumental setup for high-throughput small- and wide-angle solution scattering at the X33 beamline of EMBL Hamburg. J Appl Cryst 45(3):489–495

    Article  CAS  Google Scholar 

  65. Classen S, Rodic I, Holton J et al (2010) Software for the high-throughput collection of SAXS data using an enhanced Blu-Ice/DCS control system. J Synchrotron Radiat 17(6):774–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. David G, Perez J (2009) Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline. J Appl Cryst 42(5):892–900

    Article  CAS  Google Scholar 

  67. Classen S, Hura GL, Holton JM et al (2013) Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source. J Appl Cryst 46(Pt 1):1–13

    Article  CAS  Google Scholar 

  68. Hura GL, Menon AL, Hammel M et al (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6(8):606–612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Pernot P, Theveneau P, Giraud T et al (2010) New beamline dedicated to solution scattering from biological macromolecules at the ESRF. J Phys Conf Ser 247(1):012009

    Article  Google Scholar 

  70. Nielsen SS, Moller M, Gillilan RE (2012) High-throughput biological small-angle X-ray scattering with a robotically loaded capillary cell. J Appl Cryst 45(2):213–223

    Article  CAS  Google Scholar 

  71. Toft KN, Vestergaard B, Nielsen SS et al (2008) High-throughput Small Angle X-ray Scattering from proteins in solution using a microfluidic front-end. Anal Chem 80(10):3648–3654

    Article  CAS  PubMed  Google Scholar 

  72. Schneidman-Duhovny D, Hammel M, Sali A (2010) FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 38:W540–W544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Petoukhov MV, Konarev PV, Kikhney AG et al (2007) ATSAS 2.1—towards automated and web-supported small-angle scattering data analysis. J Appl Cryst 40(s1):s223–s228

    Article  CAS  Google Scholar 

  74. Nyam-Osor M, Soloviov DV, Kovalev YS et al (2012) Silver behenate and silver stearate powders for calibration of SAS instruments. J Phys Conf Ser 351(1):012024

    Article  Google Scholar 

  75. Konarev PV, Petoukhov MV, Volkov VV et al (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Cryst 39:277–286

    Article  CAS  Google Scholar 

  76. Rolbin Y, Kayushina RL, Feigin LA et al (1973) Calculation of the small-angle X-ray scattering intensity on a computer using a macromolecule model. Kristallografiya 18:701–705

    CAS  Google Scholar 

  77. Konarev PV, Volkov VV, Sokolova AV et al (2003) PRIMUS - a Windows-PC based system for small-angle scattering data analysis. J Appl Cryst 36:1277–1282

    Article  CAS  Google Scholar 

  78. Wassenaar T, Dijk M, Loureiro-Ferreira N et al (2012) WeNMR: structural biology on the grid. J Grid Comput 10(4):743–767

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr David Jacques of the MRC Laboratory of Molecular Biology, Cambridge, for measuring the SAXS data presented in Figures 4 and 5. This work was supported by the Bundesministerium für Bildung und Forschung (BMBF) project BIOSCAT [05K12YE1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri I. Svergun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jeffries, C.M., Svergun, D.I. (2015). High-Throughput Studies of Protein Shapes and Interactions by Synchrotron Small-Angle X-Ray Scattering. In: Owens, R. (eds) Structural Proteomics. Methods in Molecular Biology, vol 1261. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2230-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2230-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2229-1

  • Online ISBN: 978-1-4939-2230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics