Skip to main content

Probing Hfq:RNA Interactions with Hydroxyl Radical and RNase Footprinting

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

Abstract

RNA footprinting and structure probing techniques are used to characterize the interaction between RNA-binding proteins and RNAs in vitro. Hydroxyl radical footprinting results in the identification of protein binding site(s) in an RNA. Ribonuclease (RNase) structure probing is a complementary technique that also provides information about protein binding sites, as well as RNA structure and possible protein-directed RNA remodeling. Here we provide a comprehensive protocol for studying the interaction between Hfq and an mRNA or sRNA of interest using a combination of RNase A, T1, and V1 as well as hydroxyl radical footprinting techniques. Detailed protocols for in vitro synthesis of 32P-labeled RNA; formation of Hfq:RNA binary complex(es), RNase, and hydroxyl radical footprinting; preparation and running of sequencing gels; and data analysis are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589

    Article  CAS  PubMed  Google Scholar 

  2. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Valentin-Hansen P, Eriksen M, Udesen C (2004) MicroReview: the bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 51:1525–1533

    Article  CAS  PubMed  Google Scholar 

  4. Brennan RG, Link TM (2007) Hfq structure, function and ligand binding. Curr Opin Microbiol 10:125–133

    Article  CAS  PubMed  Google Scholar 

  5. Soper TJ, Doxzen K, Woodson SA (2011) Major role for mRNA binding and restructuring in sRNA recruitment by Hfq. RNA 17:1544–1550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Geissmann TA, Touati D (2004) Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J 23:396–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ross JA, Ellis MJ, Hossain S et al (2013) Hfq restructures RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10 system. RNA 19:670–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ehresmann C, Baudin F, Mougel M et al (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chevalier C, Geissmann T, Helfer A-C et al (2009) Probing mRNA Structure and sRNA–mRNA Interactions in Bacteria Using Enzymes and Lead(II). Methods Mol Biol 540:215–232

    Article  CAS  PubMed  Google Scholar 

  10. Rushizky GW, Knight CA, Sober HA (1961) Studies on the preferential specificity of pancreatic ribonuclease as deduced from partial digests. J Biol Chem 236:2732–2737

    CAS  PubMed  Google Scholar 

  11. Pace CN, Heinemann U, Hahn U et al (1991) Ribonuclease T1: structure, function, and stability. Angew Chem Int Ed Engl 30:343–360

    Article  Google Scholar 

  12. Lowman HB, Draper DE (1986) On the recognition of helical RNA by cobra venom V1 nuclease. J Biol Chem 261:5396–5403

    CAS  PubMed  Google Scholar 

  13. Sawadogo M, Roeder RG (1985) Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43:165–175

    Article  CAS  PubMed  Google Scholar 

  14. Tullius TD, Dombroski BA, Churchill MEA et al (1987) [33] Hydroxyl radical footprinting: a high-resolution method for mapping protein-DNA contacts. In: Ray W (ed) Methods in Enzymology, vol 155. Academic, New York, pp 537–558

    Google Scholar 

  15. Powers T, Noller HF (1995) Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1:194–209

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Fenton HJH (1894) LXXIII.-Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  17. Jain SS, Tullius TD (2008) Footprinting protein-DNA complexes using the hydroxyl radical. Nat Protoc 3:1092–1100

    Article  CAS  PubMed  Google Scholar 

  18. Peng Y, Soper TJ, Woodson SA (2012) RNase footprinting of protein binding sites on an mRNA target of small RNAs. Methods Mol Biol 905:213–224

    CAS  PubMed  Google Scholar 

  19. Zhang A, Wassarman KM, Ortega J et al (2002) The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9:11–22

    Article  PubMed  Google Scholar 

  20. Gagnon K, Maxwell ES (2011) Electrophoretic mobility shift assay for characterizing RNA–protein interaction. Methods Mol Biol 703:275–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Brian Munshaw for helpful discussions regarding the protocols described here. This work was supported by a grant to D.B.H. from the Canadian Institutes of Health Research (CIHR; MOP 11281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Haniford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ellis, M.J., Trussler, R.S., Ross, J.A., Haniford, D.B. (2015). Probing Hfq:RNA Interactions with Hydroxyl Radical and RNase Footprinting. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics