Skip to main content

Characterization of TRAP-Mediated Regulation of the B. subtilis trp Operon Using In Vitro Transcription and Transcriptional Reporter Fusions In Vivo

  • Protocol
  • First Online:
Book cover RNA Remodeling Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

Abstract

In Bacillus subtilis, transcription of the tryptophan biosynthetic operon is regulated by an attenuation mechanism involving two alternative RNA secondary structures in the 5′ leader region upstream of the structural genes. Regulation is accomplished, at least in part, by controlling which RNA structure forms during transcription of the operon. When intracellular tryptophan levels are high, the trp RNA-binding attenuation protein (TRAP) binds to the nascent trp mRNA to promote formation of a transcription terminator structure so as to induce transcription termination prior to the structural genes. In limiting tryptophan, TRAP does not bind, the alternative antiterminator RNA structure forms, and the operon is transcribed. Several in vitro and in vivo assays have been utilized to study TRAP-mediated regulation of both transcription and translation. Here, we describe using in vitro transcription attenuation assays and in vivo trp-lacZ fusions to examine TRAP-mediated regulation of the trp genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antson AA, Otridge J, Brzozowski AM et al (1995) The structure of trp RNA-binding attenuation protein. Nature 374:693–700

    Article  CAS  PubMed  Google Scholar 

  2. Shimotsu H, Kuroda MI, Yanofsky C, Henner DJ (1986) Novel form of transcription attenuation regulates expression the Bacillus subtilis tryptophan operon. J Bacteriol 166:461–471

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Yakhnin AV, Babitzke P (2010) Mechanism of NusG-stimulated pausing, hairpin-dependent pause site selection and intrinsic termination at overlapping pause and termination sites in the Bacillus subtilis trp leader. Mol Microbiol 76:690–705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Babitzke P, Yealy J, Campanelli D (1996) Interaction of the trp RNA-Binding attenuation protein (TRAP) of Bacillus subtilis with RNA: effects of the number of GAG repeats, the nucleotides separating adjacent repeats, and RNA secondary structure. J Bacteriol 178:5159–5163

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Otridge J, Gollnick P (1993) MtrB from Bacillus subtilis binds specifically to trp leader RNA in a tryptophan-dependent manner. Proc Natl Acad Sci U S A 90:128–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Babitzke P, Yanofsky C (1993) Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Proc Natl Acad Sci U S A 90:133–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Yang M, de Saizieu A, van Loon AP, Gollnick P (1995) Translation of trpG in Bacillus subtilis is regulated by the trp RNA-binding attenuation protein (TRAP). J Bacteriol 177:4272–4278

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Du H, Tarpey R, Babitzke P (1997) The trp RNA-binding attenuation protein regulates TrpG synthesis by binding to the trpG ribosome binding site of Bacillus subtilis. J Bacteriol 179:2582–2586

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Kuroda MI, Henner D, Yanofsky C (1988) cis-acting sites in the transcript of the Bacillus subtilis trp operon regulate expression of the operon. J Bacteriol 170:3080–3088

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Merino E, Babitzke P, Yanofsky C (1995) trp RNA-binding attenuation protein (TRAP)-trp leader RNA interactions mediate translational as well as transcriptional regulation of the Bacillus subtilis trp operon. J Bacteriol 177:6362–6370

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Du H, Babitzke P (1998) trp RNA-binding attenuation protein-mediated long distance RNA refolding regulates translation of trpE in Bacillus subtilis. J Biol Chem 273:20494–20503

    Article  CAS  PubMed  Google Scholar 

  12. Li PT, Gollnick P (2004) Characterization of a trp RNA-binding attenuation protein (TRAP) mutant with tryptophan independent RNA binding activity. J Mol Biol 335:707–722

    Article  CAS  PubMed  Google Scholar 

  13. McElroy CA, Manfredo A, Gollnick P, Foster MP (2006) Thermodynamics of tryptophan-mediated activation of the trp RNA-binding attenuation protein. Biochemistry 45:7844–7853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Payal V, Gollnick P (2006) Substitutions of Thr30 provide mechanistic insight into tryptophan-mediated activation of TRAP binding to RNA. Nucleic Acids Res 34:2933–2942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Potter KD, Merlino NM, Jacobs T, Gollnick P (2011) TRAP binding to the Bacillus subtilis trp leader region RNA causes efficient transcription termination at a weak intrinsic terminator. Nucleic Acids Res 39:2092–2102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. McAdams NM, Gollnick P (2014) The Bacillus subtilis TRAP protein can induce transcription termination in the leader region of the tryptophan biosynthetic (trp) operon independent of the trp attenuator RNA. PLoS One 9:e88097

    Article  PubMed Central  PubMed  Google Scholar 

  17. Szigeti R, Milescu M, Gollnick P (2004) Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis. J Bacteriol 186:818–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yakhnin AV, Babitzke P (2002) NusA-stimulated RNA polymerase pausing and termination participates in the Bacillus subtilis trp operon attenuation mechanism invitro. Proc Natl Acad Sci U S A 99:11067–11072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Valbuzzi A, Yanofsky C (2001) Inhibition of the B. subtilis regulatory protein TRAP by the TRAP-inhibitory protein, AT. Science 293:2057–2059

    Article  CAS  PubMed  Google Scholar 

  20. Yakhnin AV, Yakhnin H, Babitzke P (2008) Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader. Proc Natl Acad Sci U S A 105:16131–16136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Grundy FJ, Henkin TM (2004) Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro. J Bacteriol 186:5392–5399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. McDowell JC, Roberts JW, Jin DJ, Gross C (1994) Determination of intrinsic transcription termination efficiency by RNA polymerase elongation rate. Science 266:822–825

    Article  CAS  PubMed  Google Scholar 

  23. Yakhnin AV, Yakhnin H, Babitzke P (2006) RNA polymerase pausing regulates translation initiation by providing additional time for TRAP-RNA interaction. Mol Cell 24:547–557

    Article  CAS  PubMed  Google Scholar 

  24. Barbolina MV, Kristoforov R, Manfredo A et al (2007) The rate of TRAP binding to RNA is crucial for transcription attenuation control of the B. subtilis trp operon. J Mol Biol 370:925–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wright DJ, King K, Modrich P (1989) The negative charge of Glu-111 is required to activate the cleavage center of EcoRI endonuclease. J Biol Chem 264:11816–11821

    CAS  PubMed  Google Scholar 

  26. Sharma S, Gollnick P (2014) Modulating TRAP-mediated transcription termination by AT during transcription of the leader region of the Bacillus subtilis trp operon. Nucleic Acids Research 42(9):5543–5455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Grundy FJ, Yousef MR, Henkin TM (2005) Monitoring uncharged tRNA during transcription of the Bacillus subtilis glyQS gene. J Mol Biol 346:73–81

    Article  CAS  PubMed  Google Scholar 

  28. Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Shimotsu H, Henner DJ (1986) Construction of a single-copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis. Gene 43:85–94

    Article  CAS  PubMed  Google Scholar 

  30. Yakhnin H, Yakhnin AV, Babitzke P (2007) Translation control of trpG from transcripts originating from the folate operon promoter of Bacillus subtilis is influenced by translation-mediated displacement of bound TRAP, while translation control of transcripts originating from a newly identified trpG promoter is not. J Bacteriol 189:872–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yakhnin H, Zhang H, Yakhnin AV, Babitzke P (2004) The trp RNA-binding attenuation protein of Bacillus subtilis regulates translation of the tryptophan transport gene trpP (yhaG) by blocking ribosome binding. J Bacteriol 186:278–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yakhnin H, Yakhnin AV, Babitzke P (2006) The trp RNA-binding attenuation protein (TRAP) of Bacillus subtilis regulates translation initiation of ycbK, a gene encoding a putative efflux protein, by blocking ribosome binding. Mol Microbiol 61:1252–1266

    Article  CAS  PubMed  Google Scholar 

  33. Bron S, Bolhuis A, Tjalsma H et al (1998) Protein secretion and possible roles for multiple signal peptidases for precursor processing in bacilli. J Biotechnol 64:3–13

    Article  CAS  PubMed  Google Scholar 

  34. Yang M, Chen X, Militello K et al (1997) Alanine-scanning mutagenesis of Bacillus subtilis trp RNA-binding attenuation protein (TRAP) reveals residues involved in tryptophan binding and RNA binding. J Mol Biol 270:696–710

    Article  CAS  PubMed  Google Scholar 

  35. Antson AA, Brzozowski AM, Dodson EJ et al (1994) 11-fold symmetry of the trp RNA-binding attenuation protein (TRAP) from Bacillus subtilis determined by X-ray analysis. J Mol Biol 244:1–5

    Article  CAS  PubMed  Google Scholar 

  36. Qi Y, Hulett FM (1998) PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 28:1187–1197

    Article  CAS  PubMed  Google Scholar 

  37. Henner DJ (1990) Inducible expression of regulatory genes in Bacillus subtilis. Methods Enzymol 185:223–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Gollnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

McAdams, N.M., Gollnick, P. (2015). Characterization of TRAP-Mediated Regulation of the B. subtilis trp Operon Using In Vitro Transcription and Transcriptional Reporter Fusions In Vivo. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics