Skip to main content

Insoluble Protein Applications: The Use of Bacterial Inclusion Bodies as Biocatalysts

  • Protocol
  • First Online:
Insoluble Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1258))

Abstract

Biocatalysis and biotransformations have a broad application in industrial synthetic chemistry. In addition to the whole cell catalysis, purified recombinant enzymes are successfully used for biocatalysis of specific chemical reactions. In this contribution, we report characterization, immobilization, and application of several model target enzymes (d-amino acid oxidase, sialic acid aldolase, maltodextrin phosphorylase, polyphosphate kinase) physiologically aggregated within inclusion bodies (IBs) retaining their biological activity as immobilized biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gatti-Lafranconi P, Natalello A, Ami D et al (2011) Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology. FEBS J 278:2408–2418

    Article  CAS  PubMed  Google Scholar 

  2. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  PubMed  Google Scholar 

  3. Nahálka J, Nidetzky B (2007) Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis d-amino acid oxidase as insoluble enzyme aggregates. Biotechnol Bioeng 97:454–461

    Article  PubMed  Google Scholar 

  4. Nahálka J, Vikartovská A, Hrabárová E (2008) A crosslinked inclusion body process for sialic acid synthesis. J Biotechnol 134:146–153

    Article  PubMed  Google Scholar 

  5. Schein CH (1989) Production of soluble recombinant proteins in bacteria. Bio/Technology 7:1141–1149

    CAS  Google Scholar 

  6. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

    Article  CAS  PubMed  Google Scholar 

  8. García-Fruitós E, González-Montalbán N, Morell M et al (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4:27

    Article  PubMed Central  PubMed  Google Scholar 

  9. Palmer I, Wingfield PT (2004) Preparation and extraction of insoluble (inclusion-body) proteins from Escherichia coli. In: Coligan JE, Dunn BM, Speicher DW, Wingfield PT (eds) Current protocols in protein science, supplement 38, chapter 6:unit 6.3. John Wiley & Sons, Hoboken, N. J. pp 6.3.1–6.3.18

    Google Scholar 

  10. Peternel Š, Kome R (2010) Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microb Cell Fact 9:66

    Article  PubMed Central  PubMed  Google Scholar 

  11. Buchholz K, Kasche V, Bornscheuer UT (2005) Case study 1: the enzymatic production of 7-ACA from cephalosporin C. In: Wandrey C (ed) Biocatalysts and enzyme technology. Wiley, New York, pp 381–392

    Google Scholar 

  12. Riethorst W, Reichert A (1999) An industrial view on enzymes for the cleavage of cephalosporin C. Chimia 53:600–607

    CAS  Google Scholar 

  13. Liese A, Seelbach K, Buchholz A et al (2006) Processes. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations. Wiley, New York, pp 457–460

    Chapter  Google Scholar 

  14. Nahálka J (2008) Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to alpha-d-glucose-1-phosphate. J Ind Microbiol Biotechnol 35:219–223

    Article  PubMed  Google Scholar 

  15. Achbergerová L, Nahálka J (2011) Polyphosphate—an ancient energy source and active metabolic regulator. Microb Cell Fact 10:63

    Article  PubMed Central  PubMed  Google Scholar 

  16. Nahálka J, Pätoprstý V (2009) Enzymatic synthesis of sialylation substrates powered by a novel polyphosphate kinase (PPK3). Org Biomol Chem 7:1778–1780

    Article  PubMed  Google Scholar 

  17. Nahálka J, Gemeiner P, Bučko M et al (2006) Bioenergy beads: a tool for regeneration of ATP/NTP in biocatalytic synthesis. Artif Cells Blood Substit Biotechnol 34:515–521

    Article  Google Scholar 

  18. Nahálka J, Dib I, Nidetzky B (2008) Encapsulation of Trigonopsis variabilis d-amino acid oxidase and fast comparison of the operational stabilities of free and immobilized preparations of the enzyme. Biotechnol Bioeng 99:251–260

    Article  PubMed  Google Scholar 

  19. Schoevaart R, Wolbers MW, Golubovic M et al (2004) Preparation, optimization, and structures, of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng 87:754–762

    Article  CAS  PubMed  Google Scholar 

  20. Anilkumar AV, Lacik I, Wang TG (2001) A novel reactor for making uniform capsules. Biotechnol Bioeng 75:581–589

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the VEGA project No.: 2/0136/13. This contribution is the result of implementation and realization of the project ITMS-26220120054 supported by the Research and Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Nahálka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hrabárová, E., Achbergerová, L., Nahálka, J. (2015). Insoluble Protein Applications: The Use of Bacterial Inclusion Bodies as Biocatalysts. In: García-Fruitós, E. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 1258. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2205-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2205-5_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2204-8

  • Online ISBN: 978-1-4939-2205-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics