Skip to main content

Optogenetic Regulation of Dopamine Receptor-Expressing Neurons

  • Protocol
  • First Online:
Dopamine Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 96))

Abstract

Optogenetics has provided neuroscientists with the tools to control activity of specific neurons within a circuit. Optogenetic manipulation of dopamine receptor-containing neurons in the striatum holds great potential in understanding and treating a number of neuropsychiatric and neurological disorders. Coupling optogenetics with cell subtype-specific transgenic mouse lines permits dissection of dopamine receptor 1 (D1)- and dopamine receptor 2 (D2)-enriched circuits including the mesolimbic reward circuit and the basal ganglia circuit. This has led to multiple new insights into the function of dopamine receptor-expressing neurons in motivational and motor behaviors. This article discusses techniques to express microbial opsins in dopamine receptor-expressing neurons and to optogenetically activate or silence these neurons within the striatum in awake, behaving animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein JG, Boyden ES (2011) Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15(12):592–600

    Article  PubMed Central  PubMed  Google Scholar 

  2. Yizhar O, Fenno FE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71(1):9–34

    Article  CAS  PubMed  Google Scholar 

  3. Yizhar O (2012) Optogenetic insights into social behavior function. Biol Psych 71:1075–1080

    Article  Google Scholar 

  4. Tye KM, Diesseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266

    Article  CAS  PubMed  Google Scholar 

  5. Lenz JD, Lobo MK (2013) Optogenetic insights into striatal function and behavior. Behav Brain Res 255:44–54

    Article  CAS  PubMed  Google Scholar 

  6. Kravitz AV, Kreitzer AC (2012) Striatal mechanisms underlying movement, reinforcement, and punishment. Physiol (Bethesda) 27(3):167–177

    Article  Google Scholar 

  7. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15(4):133–139

    Article  CAS  PubMed  Google Scholar 

  8. Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15(9):859–865

    Article  CAS  PubMed  Google Scholar 

  9. Gong S, Zheng C, Doughty ML et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    Article  CAS  PubMed  Google Scholar 

  10. Gong S, Doughty M, Harbaugh CR et al (2007) Targeting cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27(37):9817–9823

    Article  CAS  PubMed  Google Scholar 

  11. Kravitz AV, Freeze BS, Parker PRL et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15(6):816–818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lobo MK, Covington HE III, Chaudhury D et al (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330(6002):385–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Tai L-H, Lee AM, Benavidez N et al (2012) Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 15:1281–1289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bock R, Shin JH, Kaplan AR (2013) Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat Neurosci 16:632–638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Albin RL, Young AB, Penny JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  CAS  PubMed  Google Scholar 

  17. Graybiel A (2000) The basal ganglia. Curr Biol 10(14):R509–R511

    Article  CAS  PubMed  Google Scholar 

  18. Chandra R, Lenz JD, Gancarz AM et al (2013) Optogenetic inhibition of D1R containing nucleus accumbens neurons alters cocaine-mediated regulation of Tiam1. Front Mol Neurosci 6(13):1–8. doi:10.3389/fnmol.2013.00013

    Google Scholar 

  19. Ferguson SM, Eskenazi D, Ishikawa M et al (2011) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14(1):22–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ferguson SM, Phillips PEM, Roth BL et al (2013) Direct-pathway striatal neurons regulate the retention of decision-making strategies. J Neurosci 33(28):11668–11676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hikida T, Kimura K, Wada N et al (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66(6):896–907

    Article  CAS  PubMed  Google Scholar 

  22. Kravitz A, Owen SF, Kreitzer AC (2013) Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res 1511:21–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sparta D, Stamatakis AM, Phillips JL et al (2012) Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat Protoc 7:12–23

    Article  CAS  Google Scholar 

  24. Mattis J, Tye KM, Ferenczi EA et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172

    Article  CAS  PubMed Central  Google Scholar 

  25. Zhang F, Gradinaru V, Adamantidis AR et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5:439–456

    Article  CAS  PubMed  Google Scholar 

  26. Narayanan NS, Land BB, Solder JE et al (2012) Prefrontal D1 dopamine signaling is required for temporal control. Proc Natl Acad Sci U S A 109(50):20726–20731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Deisseroth K (2013) Predicted irradiance values: model based on direct measurements in mammalian brain tissue. http://www.stanford.edu/group/dlab/cgi-bin/graph/chart.php

  28. Aravanis AM, Wang LP, Zhang F et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156

    Article  PubMed  Google Scholar 

  29. Arumbruster BN, Li X, Pausch MH et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Kay Lobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Francis, T.C., Lobo, M.K. (2015). Optogenetic Regulation of Dopamine Receptor-Expressing Neurons. In: Tiberi, M. (eds) Dopamine Receptor Technologies. Neuromethods, vol 96. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2196-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2196-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2195-9

  • Online ISBN: 978-1-4939-2196-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics