Skip to main content

Detection of Activated Caspase-8 in Injured Spinal Axons by Using Fluorochrome-Labeled Inhibitors of Caspases (FLICA )

Part of the Methods in Molecular Biology book series (MIMB,volume 1254)

Abstract

Here, we present a detailed protocol for the detection of activated caspase-8 in axotomized axons of the whole-mounted lamprey spinal cord . This method is based on the use of fluorochrome -labeled inhibitors of caspases (FLICA ) in ex vivo tissue. We offer a very convenient vertebrate model to study the retrograde degeneration of descending pathways after spinal cord injury .

Key words

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
EUR   44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7(8):628–643

    CrossRef  CAS  PubMed  Google Scholar 

  2. Berkelaar M, Clarke DB, Wang YC et al (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14:4368–4374

    CAS  PubMed  Google Scholar 

  3. Kermer P, Klöcker N, Labes M et al (1999) Activation of caspase-3 in axotomized rat retinal ganglion cells in vivo. FEBS Lett 453: 361–364

    CrossRef  CAS  PubMed  Google Scholar 

  4. Chaudhary P, Ahmed F, Quebada P et al (1999) Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. Brain Res Mol Brain Res 67:36–45

    CrossRef  CAS  PubMed  Google Scholar 

  5. Vanderluit JL, McPhail LT, Fernandes KJ et al (2000) Caspase-3 is activated following axotomy of neonatal facial motoneurons and caspase-3 gene deletion delays axotomy-induced cell death in rodents. Eur J Neurosci 12: 3469–3480

    CrossRef  CAS  PubMed  Google Scholar 

  6. Chan YM, Yick LW, Yip HK et al (2003) Inhibition of caspases promotes long-term survival and reinnervation by axotomized spinal motoneurons of denervated muscle in newborn rats. Exp Neurol 181:190–203

    CrossRef  CAS  PubMed  Google Scholar 

  7. Fry EJ, Stolp HB, Lane MA et al (2003) Regeneration of supraspinal axons after complete transection of the thoracic spinal cord in neonatal opossums (Monodelphis domestica). J Comp Neurol 466:422–444

    CrossRef  PubMed  Google Scholar 

  8. Feringa ER, Vahlsing HL (1985) Labeled corticospinal neurons one year after spinal cord transection. Neurosci Lett 58:283–286

    CrossRef  CAS  PubMed  Google Scholar 

  9. Wu KL, Chan SH, Chao YM et al (2003) Expression of pro-inflammatory cytokine and caspase genes promotes neuronal apoptosis in pontine reticular formation after spinal cord transection. Neurobiol Dis 14:19–31

    CrossRef  CAS  PubMed  Google Scholar 

  10. Hains BC, Black JA, Waxman SG (2003) Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. J Comp Neurol 462:328–341

    CrossRef  PubMed  Google Scholar 

  11. Lee BH, Lee KH, Kim UJ et al (2004) Injury in the spinal cord may produce cell death in the brain. Brain Res 1020:37–44

    CrossRef  CAS  PubMed  Google Scholar 

  12. Klapka N, Hermanns S, Straten G et al (2005) Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Eur J Neurosci 22:3047–3058

    CrossRef  PubMed  Google Scholar 

  13. Holmes G, May WP (1909) On the exact origin of the pyramidal tracts in man and other mammals. Proc R Soc Med 2:92–100

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Nielson JL, Sears-Kraxberger I, Strong MK et al (2010) Unexpected survival of neurons of origin of the pyramidal tract after spinal cord injury. J Neurosci 30:11516–11528

    CrossRef  CAS  PubMed Central  PubMed  Google Scholar 

  15. Nielson JL, Strong MK, Steward O (2011) A reassessment of whether cortical motor neurons die following spinal cord injury. J Comp Neurol 519:2852–2869

    CrossRef  PubMed Central  PubMed  Google Scholar 

  16. Selzer ME (1978) Mechanisms of functional recovery and regeneration after spinal cord transection in larval sea lamprey. J Physiol 277: 395–408

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Rodicio MC, Barreiro-Iglesias A (2012) Lampreys as an animal model in regeneration studies after spinal cord injury. Rev Neurol 55: 157–166

    PubMed  Google Scholar 

  18. Davis GR Jr, McClellan AD (1994) Extent and time course of restoration of descending brainstem projections in spinal cord-transected lamprey. J Comp Neurol 344:65–82

    CrossRef  PubMed  Google Scholar 

  19. Jacobs AJ, Swain GP, Snedeker JA (1997) Recovery of neurofilament expression selectively in regenerating reticulospinal neurons. J Neurosci 17:5206–5220

    CAS  PubMed  Google Scholar 

  20. Shifman MI, Zhang G, Selzer ME (2008) Delayed death of identified reticulospinal neurons after spinal cord injury in lampreys. J Comp Neurol 510:269–282

    CrossRef  CAS  PubMed  Google Scholar 

  21. Busch DJ, Morgan JR (2012) Synuclein accumulation is associated with cell-specific neuronal death after spinal cord injury. J Comp Neurol 520:1751–1771

    CrossRef  CAS  PubMed  Google Scholar 

  22. Barreiro-Iglesias A, Shifman MI (2012) Use of fluorochrome-labeled inhibitors of caspases to detect neuronal apoptosis in the whole-mounted lamprey brain after spinal cord injury. Enzyme Res 2012:835731

    CrossRef  PubMed Central  PubMed  Google Scholar 

  23. Ola MS, Nawaz M, Ahsan H (2011) Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 351: 41–58

    CrossRef  CAS  PubMed  Google Scholar 

  24. Riedl SJ, Salvesen GS (2007) The apoptosome, signaling platform of cell death. Nat Rev Mol Cell Biol 8:405–413

    CrossRef  CAS  PubMed  Google Scholar 

  25. Hu J, Zhang G, Selzer ME (2013) Activated caspase detection in living tissue combined with subsequent retrograde labeling, immunohistochemistry or in situ hybridization in whole-mounted lamprey brains. J Neurosci Methods 220:92–98

    CrossRef  CAS  PubMed  Google Scholar 

  26. Jin LQ, Zhang G, Jamison C Jr, Takano H, Haydon PG, Selzer ME (2009) Axon regeneration in the absence of growth cones, acceleration by cyclic AMP. J Comp Neurol 515:295–312

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A. Barreiro-Iglesias was supported by a Postdoctoral Fellowship from the Xunta de Galicia. M. I. Shifman was supported by the Shriners Research Foundation (grant number: SHC-85310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antón Barreiro-Iglesias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Barreiro-Iglesias, A., Shifman, M.I. (2015). Detection of Activated Caspase-8 in Injured Spinal Axons by Using Fluorochrome-Labeled Inhibitors of Caspases (FLICA ). In: Lossi, L., Merighi, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 1254. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2152-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2152-2_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2151-5

  • Online ISBN: 978-1-4939-2152-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics