Skip to main content

Staining of Dead Neurons by the Golgi Method in Autopsy Material

  • Protocol
  • First Online:
Neuronal Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1254))

Abstract

Golgi silver impregnation techniques remain ideal methods for the visualization of the neurons as a whole in formalin fixed brains and paraffin sections , enabling to obtain insight into the morphological and morphometric characters of the dendritic arbor , and the estimation of the morphology of the spines and the spinal density , since they delineate the profile of nerve cells with unique clarity and precision. In addition, the Golgi technique enables the study of the topographic relationships between neurons and neuronal circuits in normal conditions, and the following of the spatiotemporal morphological alterations occurring during degenerative processes . The Golgi technique has undergone many modifications in order to be enhanced and to obtain the optimal and maximal visualization of neurons and neuronal processes, the minimal precipitations, the abbreviation of the time required for the procedure, enabling the accurate study and description of specific structures of the brain . In the visualization of the sequential stages of the neuronal degeneration and death , the Golgi method plays a prominent role in the visualization of degenerating axons and dendrites , synaptic “boutons ,” and axonal terminals and organelles of the cell body . In addition, new versions of the techniques increases the capacity of precise observation of the neurofibrillary degeneration, the proliferation of astrocytes , the activation of the microglia , and the morphology of capillaries in autopsy material of debilitating diseases of the central nervous system .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Golgi C (1873) Sulla struttura della sostanza grigia del cervello. Gazz Med Ital Lombarda 33:244–246

    Google Scholar 

  2. Golgi C (1989) On the structure of nerve cells, 1898. J Microsc 155:3–7

    Article  CAS  PubMed  Google Scholar 

  3. Mazzarello P, Buchtel H, Badiani A (1999) The hidden structure: a scientific biography of Camillo Golgi. Oxford University Press, Oxford

    Google Scholar 

  4. Peters A (1955) Experiments on the mechanism of the silver staining. Part I. Impregnation. J Microsc Sci 96:84–102

    Google Scholar 

  5. Peters A (1955) Experiments on the mechanism of the silver staining. Part II. Development. J Microsc Sci 96:103–115

    Google Scholar 

  6. Peters A (1955) Experiments on the mechanism of the silver staining. Part III. Quantitative studies. J Microsc Sci 96:301–316

    CAS  Google Scholar 

  7. Ramon y Cajal S (1954) Neuron theory or reticular theory? Objective evidence of the anatomical unity of the nerve cells. Consejo Superior de Investigaciones Cientificas, Madrid

    Google Scholar 

  8. Ramon y Cajal S (1909) Histologie du Système Nerveux de l’Homme et des Vertèbres. Instituto Ramon y Cajal, Madrid, pp 774–838

    Google Scholar 

  9. López-Piñero JM (1993) Cajal y la estructura histológica del sistema nervioso. Invest Cienc 197:6–13

    Google Scholar 

  10. Corral-Corral I, Corral-Corral C, Corral-Castañedo A (1998) Cajal’s views on the Nobel Prize for physiology and medicine (October 1904). J Hist Neurosci 7:43–49

    Article  CAS  PubMed  Google Scholar 

  11. Ramon-Moliner E (1970) The Golgi–Cox technique. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, New York, pp 32–55

    Chapter  Google Scholar 

  12. Van der Loos H (1956) Une combinaison de deux vieilles méthodes histologiques pour le système nerveux central. Mschr Phychiatr Neurol 132:330–334

    Article  Google Scholar 

  13. Morest DK, Morest RR (1966) Perfusion-fixation of the brain with chromeosmium solutions for the rapid Golgi method. Am J Anat 118:811–831

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Weng SJ, Hutsler JJ (2003) Does microwaving enhance the Golgi methods? A quantitative analysis of disparate staining patterns in the cerebral cortex. J Neurosci Meth 124:145–155

    Article  CAS  Google Scholar 

  15. Pasternak JF, Woolsey TA (1975) On the “selectivity” of the Golgi–Cox method. J Comp Neurol 160:307–312

    Article  CAS  PubMed  Google Scholar 

  16. Scheibel ME, Scheibel AB (1978) The methods of Golgi. In: Robertson RT (ed) Neuroanatomical research techniques. Academic, New York, pp 90–114

    Google Scholar 

  17. Blackstad TW, Osen KK, Mugnaini E (1984) Pyramidal neurones of the dorsal cochlear nucleus: a Golgi and computer reconstruction study in cat. Neuroscience 13:827–854

    Article  CAS  PubMed  Google Scholar 

  18. Rosoklijaa GB, Petrushevskie VM, Stankovc A et al (2014) Reliable and durable Golgi staining of brain tissue from human autopsies and experimental animals. J Neurosci Meth 230:20–29

    Article  Google Scholar 

  19. Levine ND, Rademacher DJ, Collier TJ et al (2013) Advances in thin tissue Golgi–Cox impregnation: fast, reliable methods for multi-assay analyses in rodent and nonhuman primate brain. J Neurosci Meth 213:214–227

    Article  Google Scholar 

  20. Somogyi P, Hodgson AJ, Smitha AD (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4:1805–1852

    Article  CAS  PubMed  Google Scholar 

  21. Ryugo DK, Fekete DM (1982) Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: a study of the end bulbs of Held. J Comp Neurol 210:239–257

    Article  CAS  PubMed  Google Scholar 

  22. Ryugo DK, Parks TN (2003) Primary innervation of the avian and mammalian cochlear nucleus. Brain Res Bull 60:435–456

    Article  PubMed  Google Scholar 

  23. Friedland DR, Los JG, Ryugoa DK (2006) A modified Golgi staining protocol for use in the human brain stem and cerebellum. J Neurosci Meth 150:90–95

    Article  CAS  Google Scholar 

  24. Felten DL, Cummings JP (1979) The raphe nuclei of the rabbit stem. J Comp Neurol 187:199–243

    Article  CAS  PubMed  Google Scholar 

  25. Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electron microscopic study in Macacus rhesus. J Comp Neurol 141:283–312

    Article  CAS  PubMed  Google Scholar 

  26. Baloyannis SJ, Manolidis SL, Manolidis LS (2000) Synaptic alterations in the vestibulocerebellar system in Alzheimer’s disease – a Golgi and electron microscope study. Acta Otolaryngol 120:247–250

    Article  CAS  PubMed  Google Scholar 

  27. Baloyannis SJ (2005) Morphological and morphometric alterations of Cajal–Retzius cells in early cases of Alzheimer’s disease: a Golgi and electron microscope study. Int J Neurosci 115:965–980

    Article  PubMed  Google Scholar 

  28. Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Rev 39:29–54

    Article  PubMed  Google Scholar 

  29. Koyamaa Y, Nishidab T, Tohyamac M (2013) Establishment of an optimised protocol for a Golgi–electron microscopy method based on a Golgi–Cox staining procedure with a commercial kit. J Neurosci Meth 218:103–109

    Article  Google Scholar 

  30. Penzes P, Cahill ME, Jones KA et al (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bielschowsky M (1904) Silberimpregnation der neurofibrillen. J Psychol Neurol 3:169–188

    Google Scholar 

  32. Glees P (1946) Terminal degeneration within the central nervous system as studied by a new silver method. J Neuropathol Exp Neurol 5:54–59

    Article  CAS  PubMed  Google Scholar 

  33. Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma 53:37–50

    Article  CAS  PubMed  Google Scholar 

  34. Nauta WJH, Gygax PA (1951) Silver impregnation of degenerating axon terminals in the central nervous system. (1) Technique (2) Chemical notes. Stain Technol 26:5–11

    CAS  PubMed  Google Scholar 

  35. Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res 4:369–374

    Article  CAS  PubMed  Google Scholar 

  36. de Olmos JS, Ingram WR (1972) An improved cupric-silver method for impregnation of axonal and terminal degeneration. Brain Res 33:523–529

    Article  Google Scholar 

  37. Gallyas F, Wolff JR, Bottcher H et al (1980) A reliable and sensitive method to locate terminal degeneration and lysosomes in the CNS. Stain Technol 55:299–306

    CAS  PubMed  Google Scholar 

  38. Gallyas G, Hsu M, Buzsaki G (1993) Four modified silver methods for thick sections of formaldehyde-fixed mammalian central nervous tissue: ’Dark’ neurons, perikarya of all neurons, microglial cells and capillaries. J Neurosci Meth 50:159–164

    Article  CAS  Google Scholar 

  39. Switzer RC, Campbell SK, Murdock TM (1993) A histologic method for staining Alzheimer pathology. US Patent 5192688

    Google Scholar 

  40. de Beltramino CA, Olmos JS, Gallyas F et al (1993) Silver staining as a tool for neurotoxic assessment. In: Erinoff L (ed) Assessing neurotoxicity of drugs of abuse. Abuse monograph 136. National Institute of Drug, Rockville, MD, pp 101–126

    Google Scholar 

  41. Khurgel M, Switzer RC, Teskey GC et al (1995) Activation of astrocytes during epileptogenesis in the absence of neuronal degeneration. Neurobiol Dis 2:23–35

    Article  CAS  PubMed  Google Scholar 

  42. O’Callaghan JP, Jensen KF (1992) Enhanced expression of glial fibrillary acidic protein and the cupric silver degeneration reaction can be used as sensitive and early indicators of neurotoxicity. Neurotoxicology 13:113–122

    PubMed  Google Scholar 

  43. Leonard C (1981) Silver degeneration methods. In: Johnson JE Jr (ed) Current trends in morphological techniques. CRC Press, Boca Raton, FL, pp 93–140

    Google Scholar 

  44. Switzer RC, Wheat DL, Turner JC et al (1999) Patterns of programmed cell death in rat brain nuclei during postnatal days 1–10 as revealed with a silver degeneration stain. Soc Neurosci Abstr 25:1776

    Google Scholar 

  45. Black JE, Kodish IM, Grossman AW et al (2004) Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 161:742–744

    Article  PubMed  Google Scholar 

  46. Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60:236–248

    Article  PubMed  Google Scholar 

  47. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Baloyannis SJ (2005) The acoustic cortex in vascular dementia: a Golgi and electron microscope study. J Neurol Sci 229–230:51–55

    Article  PubMed  Google Scholar 

  49. Baloyannis SJ, Manolidis SL, Manolidis LS (1992) The acoustic cortex in Alzheimer's disease. Acta Otolaryngol S494:1–13

    Article  Google Scholar 

  50. Baloyannis SJ, Costa V, Mauroudis I et al (2007) Dendritic and spinal pathology in the acoustic cortex in Alzheimer’s disease: morphological and morphometric estimation by Golgi technique and electron microscopy. Acta Otolaryngol 127:351–354

    Article  PubMed  Google Scholar 

  51. Baloyannis SJ (2009) Dendritic pathology in Alzheimer’s disease. J Neurol Sci 283:153–157

    Article  CAS  PubMed  Google Scholar 

  52. Baloyannis SJ, Manolidis SL, Manolidis LS (2001) The acoustic cortex in frontal dementia. Acta Otolaryngol 121:289–292

    Article  CAS  PubMed  Google Scholar 

  53. Baloyannis SJ, Mauroudis I, Manolides SL et al (2011) The acoustic cortex in frontotemporal dementia: a Golgi and electron microscope study. Acta Otolaryngol 131:359–361

    Article  PubMed  Google Scholar 

  54. Mavroudis IA, Fotiou DF, Manani MG et al (2011) Dendritic pathology and spinal loss in the visual cortex in Alzheimer's disease: a Golgi study in pathology. Int J Neurosci 121:347–354

    Article  PubMed  Google Scholar 

  55. Baloyannis SJ, Mauroudis I, Manolides SL et al (2009) Synaptic alterations in the medial geniculate bodies and the inferior colliculi in Alzheimer's disease: a Golgi and electron microscope study. Acta Otolaryngol 129:416–418

    Article  PubMed  Google Scholar 

  56. Tsamis IK, Mytilinaios GD, Njau NS et al (2010) Properties of CA3 dendritic excrescences in Alzheimer’s disease. Curr Alzheimer Res 7:84–90

    Article  CAS  PubMed  Google Scholar 

  57. Mavroudis IA, Fotiou DF, Adipepe LF et al (2010) Morphological changes of the human Purkinje cells and deposition of neuritic plaques and neurofibrillary tangles on the cerebellar cortex of Alzheimer's disease. Am J Alzheimers Dis Other Demen 25:585–591

    Article  PubMed  Google Scholar 

  58. Mavroudis IA, Manani MG, Petrides F et al (2013) Dendritic and spinal pathology of the Purkinje cells from the human cerebellar vermis in Alzheimer's disease. Psychiatr Danub 25:221–226

    PubMed  Google Scholar 

  59. Baloyannis SJ (2007) Pathological alterations of the climbing fibres of the cerebellum in vascular dementia: a Golgi and electron microscope study. J Neurol Sci 257:56–61

    Article  PubMed  Google Scholar 

  60. Baloyannis SJ, Costa V, Baloyannis IS (2006) Morphological alterations of the synapses in the locus coeruleus in Parkinson’s disease. J Neurol Sci 248:35–41

    Article  PubMed  Google Scholar 

  61. Baloyannis SJ (2013) Recent progress of the Golgi technique and electron microscopy to examine dendritic pathology in Alzheimer’s disease. Future Neurol 8:239–242

    Article  CAS  Google Scholar 

  62. Baloyannis SJ, Baloyannis IS (2012) The vascular factor in Alzheimer's disease: a study in Golgi technique and electron microscopy. J Neurol Sci 322:117–121

    Article  CAS  PubMed  Google Scholar 

  63. Brown CE, Wong C, Murphy TH (2008) Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic stroke. Stroke 39:1286–1291

    Article  PubMed  Google Scholar 

  64. Li S, Kang L, Zhang C et al (2013) Effects of dihydrotestosterone on synaptic plasticity of hippocampus in male SAMP8 mice. Exp Gerontol 48:778–785

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros J. Baloyannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baloyannis, S.J. (2015). Staining of Dead Neurons by the Golgi Method in Autopsy Material. In: Lossi, L., Merighi, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 1254. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2152-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2152-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2151-5

  • Online ISBN: 978-1-4939-2152-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics