Perineuronal Nets: A Special Structure in the Central Nervous System Extracellular Matrix

  • Jessica C. F. Kwok
  • Simona Foscarin
  • James W. FawcettEmail author
Part of the Neuromethods book series (NM, volume 93)


The extracellular matrix of the central nervous system (CNS) contains various compartments. Perineuronal nets (PNNs) are specialized and stable brain matrices which enwrap the surface of the soma and proximal dendrites on the neuronal surface. The presence of PNNs marks the end of the critical period in the developing CNS and limits the degree of plasticity after CNS injury. Chondroitin sulfate proteoglycans, link proteins, hyaluronan, and tenascin-R are identified in the PNNs. Here, we describe a method which allows the sequential extraction of the main matrix compartments of the CNS, ending with the isolation of the PNN matrix molecules from the normal loose extracellular matrix in the brain. Finally we describe an easy way to quantify the extracted glycans.

Key words

Central nervous system Brain Spinal cord Extracellular matrix Proteoglycan Chondroitin sulfate Hyaluronan Link protein Glycan extraction CPC turbidimetry 


  1. 1.
    Seeger G, Brauer K, Härtig W et al (1994) Mapping of perineuronal nets in the rat brain stained by colloidal iron hydroxide histochemistry and lectin cytochemistry. Neuroscience 58:371–388PubMedCrossRefGoogle Scholar
  2. 2.
    Hendry SH, Jones EG, Hockfield S et al (1988) Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus. J Neurosci 8:518–542PubMedGoogle Scholar
  3. 3.
    Hagihara K, Miura R, Kosaki R et al (1999) Immunohistochemical evidence for the brevican-tenascin-R interaction: colocalization in perineuronal nets suggests a physiological role for the interaction in the adult rat brain. J Comp Neurol 410:256–564PubMedCrossRefGoogle Scholar
  4. 4.
    Köppe G, Brückner G, Härtig W et al (1997) Characterization of proteoglycan-containing perineuronal nets by enzymatic treatments of rat brain sections. Histochem J 29:11–20PubMedCrossRefGoogle Scholar
  5. 5.
    Kwok JC, Carulli D, Fawcett JW (2010) In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J Neurochem 114:1447–1459PubMedGoogle Scholar
  6. 6.
    Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888PubMedCrossRefGoogle Scholar
  7. 7.
    Nakamura M, Nakano K, Morita S et al (2009) Expression of chondroitin sulfate proteoglycans in barrel field of mouse and rat somatosensory cortex. Brain Res 1252:117–129PubMedCrossRefGoogle Scholar
  8. 8.
    Gogolla N, Caroni P, Lüthi A et al (2009) Perineuronal nets protect fear memories from erasure. Science 325:1258–1261PubMedCrossRefGoogle Scholar
  9. 9.
    Pizzorusso T, Medini P, Berardi N et al (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251PubMedCrossRefGoogle Scholar
  10. 10.
    Carulli D, Pizzorusso T, Kwok JC et al (2010) Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133:2331–2347PubMedCrossRefGoogle Scholar
  11. 11.
    Soleman S, Yip PK, Duricki DA et al (2012) Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats. Brain 135:1210–1223PubMedCrossRefGoogle Scholar
  12. 12.
    Wang D, Ichiyama RM, Zhao R et al (2011) Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci 31:9332–9344PubMedCrossRefGoogle Scholar
  13. 13.
    Kwok JC, Dick G, Wang D et al (2011) Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol 71:1073–1089PubMedCrossRefGoogle Scholar
  14. 14.
    Frazier SB, Roodhouse KA, Hourcade DE (2008) The quantification of glycosaminoglycans: a comparison of HPLC, carbazole, and alcian blue methods. Open Glycosci 1:31–39PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Manley G, Hawksworth J (1966) Diagnosis of Hurler’s syndrome in the hospital laboratory and the determination of its genetic type. Arch Dis Child 41:91–96PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Deepa SS, Carulli D, Galtrey C et al (2006) Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 281:17789–17800PubMedCrossRefGoogle Scholar
  17. 17.
    Gaitonde MK, Murray E (1989) The effect of conditions of homogenization on the activity of pyruvate dehydrogenase and its stability in brain homogenates. Neurochem Int 15:355–358PubMedCrossRefGoogle Scholar
  18. 18.
    Simpson RJ (2010) Homogenization of mammalian tissue. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5455Google Scholar
  19. 19.
    Calabro A, Benavides M, Tammi M et al (2000) Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE). Glycobiology 10:273–281PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jessica C. F. Kwok
    • 1
  • Simona Foscarin
    • 1
  • James W. Fawcett
    • 1
    Email author
  1. 1.John van Geest Centre for Brain RepairUniversity of CambridgeCambridgeUK

Personalised recommendations