Advertisement

Hydrolytically Degradable Polyethylene Glycol (PEG) Hydrogel: Synthesis, Gel Formation, and Characterization

  • Silviya Petrova ZustiakEmail author
Protocol
Part of the Neuromethods book series (NM, volume 93)

Abstract

Degradable tight-mesh hydrogel scaffolds are a promising cell carrier for neural transplantation because they can match the stiffness of the native tissue, decrease immunogenicity of the transplant, and degrade over time as the new tissue forms. Here we describe the synthesis and gel formation of a hydrolytically degradable polyethylene glycol (PEG) hydrogel, where the mild gelation conditions allow for cell encapsulation prior to gel formation. We also describe how to measure swelling ratio and mass loss of the hydrogel over time in order to assess hydrogel degradation.

Key words

Polyethylene glycol (PEG) Mass Loss Swelling ratio Hydrolytic degradation Azeotropic distillation 

References

  1. 1.
    Piccini P, Pavese N, Hagell P et al (2005) Factors affecting the clinical outcome after neural transplantation in parkinson's disease. Brain 128:2977–2986PubMedCrossRefGoogle Scholar
  2. 2.
    Lepore AC, Neuhuber B, Connors TM et al (2006) Long-term fate of neural precursor cells following transplantation into developing and adult cns. Neuroscience 142:287–304PubMedCrossRefGoogle Scholar
  3. 3.
    Mahoney MJ, Anseth KS (2006) Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 27:2265–2274PubMedCrossRefGoogle Scholar
  4. 4.
    Hynes SR, McGregor LM, Millicent FR et al (2007) Photopolymerized poly(ethylene glycol)/poly(l-lysine) hydrogels for the delivery of neural progenitor cells Journal of Biomaterials Science. Polymer Ed 18:1017–1030Google Scholar
  5. 5.
    Hynes SR, Rauch MF, Bertram JP et al (2009) A library of tunable poly(ethylene glycol)/poly(l-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation. J Biomed Mater Res A 89:499–509PubMedCrossRefGoogle Scholar
  6. 6.
    Freudenberg U, Hermann A, Welzel PB et al (2009) A star-peg-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30:5049–5060PubMedCrossRefGoogle Scholar
  7. 7.
    Miller K, Chinzei K, Orssengo G et al (2000) Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J Biomech 33:1369–1376PubMedCrossRefGoogle Scholar
  8. 8.
    Wilson JT, Chaikof EL (2008) Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev 60:124–145PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Modo M, Rezaie P, Heuschling P et al (2002) Transplantation of neural stem cells in a rat model of stroke: assessment of short-term graft survival and acute host immunological response. Brain Res 958:70–82PubMedCrossRefGoogle Scholar
  10. 10.
    Sawhney AS, Pathak CP, Hubbell JA (1993) Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(Alpha-hydroxy acid) diacrylate macromers. Macromolecules 26:581–587CrossRefGoogle Scholar
  11. 11.
    Zustiak SP, Ribeiro A, Pubill S et al (2013) Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds as a cell delivery vehicle: characterization of pc12 cell response. Biotechnology Progress 29:1255–1264Google Scholar
  12. 12.
    Lutolf MP, Hubbell JA (2003) Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by michael-type addition. Biomacromolecules 4:713–722PubMedCrossRefGoogle Scholar
  13. 13.
    Nie T, Baldwin A, Yamaguchi N et al (2007) Production of heparin-functionalized hydrogels for the development of responsive and controlled growth factor delivery systems. J Control Release 122:287–296PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Zustiak SP, Leach JB (2010) Hydrolytically degradable poly (ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11:1348–1357PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Zustiak SP, Durbal R, Leach JB (2010) Influence of cell-adhesive peptide ligands on poly (ethylene glycol) hydrogel physical, mechanical and transport properties. Acta Biomater 6:3404–3414PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kozlowski A, Harris JM (2001) Improvements in protein pegylation: Pegylated interferons for treatment of hepatitis c. J Control Release 72:217–224PubMedCrossRefGoogle Scholar
  17. 17.
    Rydholm AE, Reddy SK, Anseth KS et al (2006) Controlling network structure in degradable thiol-acrylate biomaterials to tune mass loss behavior. Biomacromolecules 7:2827–2836PubMedCrossRefGoogle Scholar
  18. 18.
    Lutolf M, Tirelli N, Cerritelli S et al (2001) Systematic modulation of michael-type reactivity of thiols through the use of charged amino acids. Bioconjug Chem 12:1051–1056PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringSaint Louis UniversitySt LouisUSA

Personalised recommendations