Cultivation and Imaging of Astrocytes on Protein-Coated Fluorescent Topographies Constructed from Aligned PLLA Electrospun Fibers

  • Jonathan M. Zuidema
  • María C. Hyzinski-García
  • Alexander A. Mongin
  • Ryan J. GilbertEmail author
Part of the Neuromethods book series (NM, volume 93)


Electrospun poly-l-lactic acid (PLLA) fibers are presently explored as tissue engineering platforms for regeneration of the central nervous system. In particular, aligned, electrospun fibers are capable of directing astrocyte cellular extension and migration. The precise mechanisms by which aligned, electrospun substrates alter glial cell behavior are poorly understood. Therefore, there is a need for designing and refining electrospun fiber platforms and developing novel approaches for studying astrocytic behavior and physiology on aligned substrates. Here, we describe and discuss methods for (1) fabrication of fluorescent PLLA microfibers by electrospinning, (2) coating PLLA fibers with different extracellular matrix (ECM) proteins to facilitate attachment of astroglial cells, (3) isolation of primary astrocytes and plating them onto PLLA fibers, and (4) imaging the interactions between PLLA fibers and astrocytes to better understand the ability of fibers to enable astrocyte extension and migration.

Key words

Astrocyte Biomaterial Electrospun fibers Poly-l-lactic acid ECM coating 



This work was supported by NSF CAREER Award 1105125 to R.J.G. and NIH grant R01 NS061953 to A.A.M.


  1. 1.
    Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031PubMedCrossRefGoogle Scholar
  2. 2.
    Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system. Oxford University Press, LondonGoogle Scholar
  4. 4.
    Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156PubMedCrossRefGoogle Scholar
  5. 5.
    Cao H, Liu T, Chew SY (2009) The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 61:1055–1064PubMedCrossRefGoogle Scholar
  6. 6.
    Spivey EC, Khaing ZZ, Shear JB, Schmidt CE (2012) The fundamental role of subcellular topography in peripheral nerve repair therapies. Biomaterials 33:4264–4276PubMedCrossRefGoogle Scholar
  7. 7.
    Hurtado A, Cregg JM, Wang HB, Wendell DF, Oudega M, Gilbert RJ, McDonald JW (2011) Robust CNS regeneration after complete spinal cord transection using aligned poly-L-lactic acid microfibers. Biomaterials 32:6068–6079PubMedCentralPubMedGoogle Scholar
  8. 8.
    Baiguera S, Del Gaudio C, Fioravanzo L, Bianco A, Grigioni M, Folin M (2010) In vitro astrocyte and cerebral endothelial cell response to electrospun poly(ε-caprolactone) mats of different architecture. J Mater Sci Mater Med 21:1353–1362PubMedCrossRefGoogle Scholar
  9. 9.
    Cao H, Marcy G, Gow ELK, Wang F, Wang J, Chew SY (2012) The effects of nanofiber topography on astrocyte behavior and gene silencing efficiency. Macromol Biosci 12:666–674PubMedCrossRefGoogle Scholar
  10. 10.
    Chow WN, Simpson DG, Bigbee JW, Colello RJ (2007) Evaluating neuronal and glial growth on electrospun polarized matrices: bridging the gap in percussive spinal cord injuries. Neuron Glia Biol 3:119–126PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kim SH, Shin C, Min SK, Jung S, Shin HS (2012) In vitro evaluation of the effects of electrospun PCL nanofiber mats containing the microalgae Spirulina (Arthrospira) extract on primary astrocytes. Colloids Surf B Biointerfaces 90:113–118PubMedCrossRefGoogle Scholar
  12. 12.
    Min SK, Jung S, Kim SH, Kim CR, Shin HS (2013) Implications of the oxygenated electrospun poly(ε-caprolactone) nanofiber for the astrocytes activities. J Biomed Mater Res B Appl Biomater 101:1267–1274Google Scholar
  13. 13.
    Min SK, Kim CR, Jung SM, Shin HS (2013) Astrocyte behavior and GFAP expression on Spirulina extract-incorporated PCL nanofiber. J Biomed Mater Res A 101:3467–3473Google Scholar
  14. 14.
    Min SK, Kim SH, Kim CR, Paik S, Jung S, Shin HS (2013) Effect of topography of an electrospun nanofiber on modulation of primary rat astrocytes. Neurosci Lett 534:80–84PubMedCrossRefGoogle Scholar
  15. 15.
    Puschmann TB, Zandén C, De Pablo Y, Kirchhoff F, Pekna M, Liu J, Pekny M (2013) Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells. Glia 61:432–440PubMedCrossRefGoogle Scholar
  16. 16.
    Qu J, Wang D, Wang H, Dong Y, Zhang F, Zuo B, Zhang H (2013) Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration. J Biomed Mater Res A 101:2667–2678Google Scholar
  17. 17.
    Biran R, Noble MD, Tresco PA (2003) Directed nerve outgrowth is enhanced by engineered glial substrates. Exp Neurol 184:141–152PubMedCrossRefGoogle Scholar
  18. 18.
    Mattotti M, Alvarez Z, Ortega JA, Planell JA, Engel E, Alcántara S (2012) Inducing functional radial glia-like progenitors from cortical astrocyte cultures using micropatterned PMMA. Biomaterials 33:1759–1770PubMedCrossRefGoogle Scholar
  19. 19.
    Ereifej ES, Matthew HW, Newaz G, Mukhopadhyay A, Auner G, Salakhutdinov E, VandeVord PJ (2013) Nanopatterning effects on astrocyte reactivity. J Biomed Mater Res A 101:1743–1757PubMedCrossRefGoogle Scholar
  20. 20.
    Summers L, Kangwantas K, Nguyen L, Kielty C, Pinteaux E (2010) Adhesion to the extracellular matrix is required for interleukin-1 beta actions leading to reactive phenotype in rat astrocytes. Mol Cell Neurosci 44:272–281PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Norton WT, Poduslo SE (1970) Neuronal soma and whole neuroglia of rat brain: a new isolation technique. Science 167:1144–1146PubMedCrossRefGoogle Scholar
  22. 22.
    Farooq M, Norton WT (1978) A modified procedure for isolation of astrocyte- and neuron-enriched fractions from rat brain. J Neurochem 31:887–894PubMedCrossRefGoogle Scholar
  23. 23.
    Poduslo SE, Norton WT (1975) Isolation of specific brain cells. Methods Enzymol 35:561–579PubMedCrossRefGoogle Scholar
  24. 24.
    Mongin AA, Hyzinski-García MC, Vincent MY, Keller RW Jr (2011) A simple method for measuring intracellular activities of glutamine synthetase and glutaminase in glial cells. Am J Physiol Cell Physiol 301:C814–C822PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Mecha M, Iñigo PM, Mestre L, Hernangómez M, Borrel J, Guaza C (2011) An easy and fast way to obtain a high number of glial cells form rat cerebral tissue: a beginners approach. Protoc Exchange. doi: 10.1038/protex.2011.218 Google Scholar
  26. 26.
    Megelski S, Stephens JS, Chase DB et al (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35:8456–8466CrossRefGoogle Scholar
  27. 27.
    Wang HB, Mullins ME, Cregg JM, Hurtado A, Oudega M, Trombley MT, Gilbert RJ (2009) Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J Neural Eng 6:016001PubMedCrossRefGoogle Scholar
  28. 28.
    Zuidema JM, Hyzinski-Garcia MC, Van Vlasselaer K, Zaccor NW, Plopper GE, Mongin AA, Gilbert RJ. (2014) Enhanced GLT-1 mediated glutamate uptake and migration of primary astrocytes directed by fibronectin-coated electrospun poly-L-lactic acid fibers. Biomaterials 35:1439–1449Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jonathan M. Zuidema
    • 1
  • María C. Hyzinski-García
    • 2
  • Alexander A. Mongin
    • 2
  • Ryan J. Gilbert
    • 1
    Email author
  1. 1.Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  2. 2.Center for Neuropharmacology and NeuroscienceAlbany Medical CollegeAlbanyUSA

Personalised recommendations