Advertisement

Modulation of Neural Stem Cell Expressed Extracellular Matrix (ECM) by Targeting Glycosyltransferases

  • Eva Hennen
  • Andreas FaissnerEmail author
Protocol
Part of the Neuromethods book series (NM, volume 93)

Abstract

The stem cell niche microenvironment is rich in highly glycosylated extracellular matrix (ECM) proteins such as tenascin-C, chondroitin sulphate proteoglycans (CSPGs), laminins and their receptors, the β1-integrins. These proteins are present in the central nervous system (CNS) during embryonic development, and they are retained in adult neural stem cell niches such as the subventricular zone (SVZ) of the lateral ventricle. This niche composition favours stem cell maintenance, the proliferation of neuronal precursor cells and their differentiation. In this chapter we will briefly introduce three common glycan motifs present on ECM glycoproteins of the CNS. Furthermore, we outline a protocol on how to transfect neural stem cells with expression plasmids coding for individual glycosyltransferases. This is a means to modify the glycosylation of cell surface and ECM proteins and thus study the effects of protein glycosylation.

Key words

Nucleofection Neural stem cells Neurospheres Cell surface antigens Glycoconjugates Glycans 

References

  1. 1.
    Gates MA, Thomas LB, Howard EM, Laywell ED, Sajin B, Faissner A, Gotz B, Silver J, Steindler DA (1995) Cell and molecular analysis of the developing and adult mouse subventricular zone of the cerebral hemispheres. J Comp Neurol 361(2):249–266PubMedCrossRefGoogle Scholar
  2. 2.
    Jankovski A, Sotelo C (1996) Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J Comp Neurol 371(3):376–396PubMedCrossRefGoogle Scholar
  3. 3.
    Akita K, von Holst A, Furukawa Y, Mikami T, Sugahara K, Faissner A (2008) Expression of multiple chondroitin/dermatan sulfotransferases in the neurogenic regions of the embryonic and adult central nervous system implies that complex chondroitin sulfates have a role in neural stem cell maintenance. Stem Cells 26(3):798–809, doi: 10.1634/stemcells.2007-0448 PubMedCrossRefGoogle Scholar
  4. 4.
    von Holst A, Sirko S, Faissner A (2006) The unique 473HD-chondroitinsulfate epitope is expressed by radial glia and involved in neural precursor cell proliferation. J Neurosci 26(15):4082–4094, doi: 10.1523/JNEUROSCI.0422-06.2006
  5. 5.
    Loulier K, Lathia JD, Marthiens V, Relucio J, Mughal MR, Tang SC, Coksaygan T, Hall PE, Chigurupati S, Patton B, Colognato H, Rao MS, Mattson MP, Haydar TF, Ffrench-Constant C (2009) Beta1 integrin maintains integrity of the embryonic neocortical stem cell niche. PLoS Biol 7(8):e1000176, doi: 10.1371/journal.pbio.1000176 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Lathia JD, Patton B, Eckley DM, Magnus T, Mughal MR, Sasaki T, Caldwell MA, Rao MS, Mattson MP, Ffrench-Constant C (2007) Patterns of laminins and integrins in the embryonic ventricular zone of the CNS. J Comp Neurol 505(6):630–643, doi: 10.1002/cne.21520 PubMedCrossRefGoogle Scholar
  7. 7.
    Senn C, Kutsche M, Saghatelyan A, Bosl MR, Lohler J, Bartsch U, Morellini F, Schachner M (2002) Mice deficient for the HNK-1 sulfotransferase show alterations in synaptic efficacy and spatial learning and memory. Mol Cell Neurosci 20(4):712–729, doi: 10.1006/mcne.2002.1142 PubMedCrossRefGoogle Scholar
  8. 8.
    Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5(3):195–208, doi: 10.1038/nrn1349nrn1349 PubMedCrossRefGoogle Scholar
  9. 9.
    Yagi H, Yanagisawa M, Suzuki Y, Nakatani Y, Ariga T, Kato K, Yu RK (2010) HNK-1 epitope-carrying tenascin-C spliced variant regulates the proliferation of mouse embryonic neural stem cells. J Biol Chem 285(48):37293–37301, doi: 10.1074/jbc.M110.157081 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Abbott KL, Matthews RT, Pierce M (2008) Receptor tyrosine phosphatase beta (RPTPbeta) activity and signaling are attenuated by glycosylation and subsequent cell surface galectin-1 binding. J Biol Chem 283(48):33026–33035, doi: 10.1074/jbc.M803646200 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Clement AM, Nadanaka S, Masayama K, Mandl C, Sugahara K, Faissner A (1998) The DSD-1 carbohydrate epitope depends on sulfation, correlates with chondroitin sulfate D motifs, and is sufficient to promote neurite outgrowth. J Biol Chem 273(43):28444–28453, doi: 10.1074/jbc.273.43.28444
  12. 12.
    Faissner A, Clement A, Lochter A, Streit A, Mandl C, Schachner M (1994) Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties. J Cell Biol 126(3):783–799PubMedCrossRefGoogle Scholar
  13. 13.
    Nayak G, Goodyear RJ, Legan PK, Noda M, Richardson GP (2010) Evidence for multiple, developmentally regulated isoforms of Ptprq on hair cells of the inner ear. Dev Neurobiol 71(2):129–141. doi: 10.1002/dneu.20831 CrossRefGoogle Scholar
  14. 14.
    Probstmeier R, Braunewell K, Pesheva P (2000) Involvement of chondroitin sulfates on brain-derived tenascin-R in carbohydrate-dependent interactions with fibronectin and tenascin-C. Brain Res 863(1–2):42–51, doi: 10.1016/S0006-8993(00)02075-8 PubMedCrossRefGoogle Scholar
  15. 15.
    Sirko S, von Holst A, Weber A, Wizenmann A, Theocharidis U, Gotz M, Faissner A (2010) Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny. Stem Cells 28(4):775–787. doi: 10.1002/stem.309 PubMedCrossRefGoogle Scholar
  16. 16.
    Kudo T, Fujii T, Ikegami S, Inokuchi K, Takayama Y, Ikehara Y, Nishihara S, Togayachi A, Takahashi S, Tachibana K, Yuasa S, Narimatsu H (2007) Mice lacking alpha1,3-fucosyltransferase IX demonstrate disappearance of Lewis x structure in brain and increased anxiety-like behaviors. Glycobiology 17(1):1–9, doi: 10.1093/glycob/cwl047 PubMedCrossRefGoogle Scholar
  17. 17.
    Hennen E, Faissner A (2012) LewisX: a neural stem cell specific glycan? Int J Biochem Cell Biol 44(6):830–833, doi:10.1016/j.biocel.2012.02.019PubMedCrossRefGoogle Scholar
  18. 18.
    Hennen E, Czopka T, Faissner A (2011) Structurally distinct LewisX glycans distinguish subpopulations of neural stem/progenitor cells. J Biol Chem 286(18):16321–16331, doi: 10.1074/jbc.M110.201095 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Hennen E, Safina D, Haussmann U, Worsdorfer P, Edenhofer F, Poetsch A, Faissner A (2013) A LewisX-glycoprotein screen identifies the low density lipoprotein receptor-related protein 1 (LRP1) as a modulator of oligodendrogenesis in mice. J Biol Chem 288(23):16538–16545, doi: 10.1074/jbc.M112.419812

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Cell Morphology and Molecular NeurobiologyRuhr-University BochumBochumGermany

Personalised recommendations