Advertisement

Chondroitinase Gene Therapy for Spinal Cord Injury

  • Jianli Hu
  • Gabrielle M. Curinga
  • George M. SmithEmail author
Protocol
Part of the Neuromethods book series (NM, volume 93)

Abstract

Spinal cord injury (SCI) can lead to permanent paralysis below the level of injury. Environmental factors within the injured spinal cord have been shown to strongly participate in regenerative failure. Shortly after injury, the formation of a glial-fibroblastic scar develops at the injury site. Besides isolating the injury area and stabilizing inflammation and cellular damage, the glial scar is also an important source of both the physical and molecular barriers affecting axonal regeneration. The responding reactive astrocytes are known to secrete a group of potent axonal growth-inhibitory matrix molecules known as chondroitin sulfate proteoglycans (CSPGs). The inhibitory nature of these CSPGs can be dramatically attenuated using the bacterial enzyme chondroitinase ABC. Since chondroitinase rapidly degrades, long-term studies require either (1) multiple injections of purified protein, (2) expression of the chondroitinase transgene, or (3) biodegradable scaffold to release the protein slowly. Of these options, the latter two are preferred. We have developed an easy and rapid method of analyzing the bioactivity of chondroitinase released by genetically altered cells or from a biodegradable platform.

Key words

Spinal cord Injury Chondroitinase Glial scar Astrocyte CSPG Extracellular matrix Gene therapy 

Notes

Acknowledgments

This work was funded by a grant from the National Institute of Neurological Disorders and Stroke R01 NS060784 and the Shriners Hospital for Pediatric Research grants SHC 84050 and SHC 85200 (GMS).

References

  1. 1.
    Bruckner G, Grosche J, Schmidt S et al (2000) Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J Comp Neurol 428:616–629PubMedCrossRefGoogle Scholar
  2. 2.
    Deepa SS, Carulli D, Galtrey C et al (2006) Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 281:17789–17800PubMedCrossRefGoogle Scholar
  3. 3.
    Morgenstern DA, Asher RA, Fawcett JW (2002) Chondroitin sulphate proteoglycans in the CNS injury response. Prog Brain Res 137:313–332PubMedCrossRefGoogle Scholar
  4. 4.
    Snow DM, Lemmon V, Carrino DA et al (1990) Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurol 109:111–130PubMedCrossRefGoogle Scholar
  5. 5.
    McKeon RJ, Schreiber RC, Rudge JS et al (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11:3398–3411PubMedGoogle Scholar
  6. 6.
    Lemons ML, Howland DR, Anderson DK (1999) Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp Neurol 160:51–65PubMedCrossRefGoogle Scholar
  7. 7.
    Tang X, Davies JE, Davies SJ (2003) Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J Neurosci Res 71:427–444PubMedCrossRefGoogle Scholar
  8. 8.
    Jones LL, Margolis RU, Tuszynski MH (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182:399–411PubMedCrossRefGoogle Scholar
  9. 9.
    Iaci JF, Vecchione AM, Zimber MP et al (2007) Chondroitin sulfate proteoglycans in spinal cord contusion injury and the effects of chondroitinase treatment. J Neurotrauma 24:1743–1759PubMedCrossRefGoogle Scholar
  10. 10.
    Davies SJ, Goucher DR, Doller C et al (1999) Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 19:5810–5822PubMedGoogle Scholar
  11. 11.
    Yamagata T, Saito H, Habuchi O et al (1968) Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem 243:1523–1535PubMedGoogle Scholar
  12. 12.
    McKeon RJ, Hoke A, Silver J (1995) Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136:32–43PubMedCrossRefGoogle Scholar
  13. 13.
    Busch SA, Horn KP, Cuascut FX et al (2010) Adult NG2+ cells are permissive to neurite outgrowth and stabilize sensory axons during macrophage-induced axonal dieback after spinal cord injury. J Neurosci 30:255–265PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Moon LD, Asher RA, Rhodes KE et al (2001) Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat Neurosci 4:465–466PubMedGoogle Scholar
  15. 15.
    Bradbury EJ, Moon LD, Popat RJ et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640PubMedCrossRefGoogle Scholar
  16. 16.
    Yick LW, Cheung PT, So KF et al (2003) Axonal regeneration of Clarke's neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC. Exp Neurol 182:160–168PubMedCrossRefGoogle Scholar
  17. 17.
    Houle JD, Tom VJ, Mayes D et al (2006) Combining an autologous peripheral nervous system "bridge" and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J Neurosci 26:7405–7415PubMedCrossRefGoogle Scholar
  18. 18.
    Tom VJ, Houle JD (2008) Intraspinal microinjection of chondroitinase ABC following injury promotes axonal regeneration out of a peripheral nerve graft bridge. Exp Neurol 211:315–319PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Cafferty WB, Yang SH, Duffy PJ et al (2007) Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci 27:2176–2185PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Cafferty WB, Bradbury EJ, Lidierth M et al (2008) Chondroitinase ABC-mediated plasticity of spinal sensory function. J Neurosci 28:11998–12009PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Barritt AW, Davies M, Marchand F et al (2006) Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci 26:10856–10867PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Shen Y, Tenney AP, Busch SA et al (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326:592–596PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Fry EJ, Chagnon MJ, Lopez-Vales R et al (2010) Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. Glia 58:423–433PubMedGoogle Scholar
  24. 24.
    Fisher D, Xing B, Dill J et al (2011) Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 31:14051–14066PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Dickendesher TL, Baldwin KT, Mironova YA et al (2012) NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 15(5):703–712PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Monnier PP, Sierra A, Schwab JM et al (2003) The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci 22:319–330PubMedCrossRefGoogle Scholar
  27. 27.
    Yick LW, Wu W, So KF et al (2000) Chondroitinase ABC promotes axonal regeneration of Clarke's neurons after spinal cord injury. Neuroreport 11:1063–1067PubMedCrossRefGoogle Scholar
  28. 28.
    Tester NJ, Plaas AH, Howland DR (2007) Effect of body temperature on chondroitinase ABC's ability to cleave chondroitin sulfate glycosaminoglycans. J Neurosci Res 85:1110–1118PubMedCrossRefGoogle Scholar
  29. 29.
    Chau CH, Shum DK, Li H et al (2004) Chondroitinase ABC enhances axonal regrowth through Schwann cell-seeded guidance channels after spinal cord injury. FASEB J 18:194–196PubMedGoogle Scholar
  30. 30.
    Tom VJ, Kadakia R, Santi L et al (2009) Administration of chondroitinase ABC rostral or caudal to a spinal cord injury site promotes anatomical but not functional plasticity. J Neurotrauma 26:2323–2333PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Caggiano AO, Zimber MP, Ganguly A et al (2005) Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord. J Neurotrauma 22:226–239PubMedCrossRefGoogle Scholar
  32. 32.
    Shields LB, Zhang YP, Burke DA et al (2008) Benefit of chondroitinase ABC on sensory axon regeneration in a laceration model of spinal cord injury in the rat. Surg Neurol 69:568–577, discussion 577PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Jones LL, Tuszynski MH (2001) Chronic intrathecal infusions after spinal cord injury cause scarring and compression. Microsc Res Tech 54:317–324PubMedCrossRefGoogle Scholar
  34. 34.
    Curinga GM, Snow DM, Mashburn C et al (2007) Mammalian-produced chondroitinase AC mitigates axon inhibition by chondroitin sulfate proteoglycans. J Neurochem 102:275–288PubMedCrossRefGoogle Scholar
  35. 35.
    Jin Y, Ketschek A, Jiang Z et al (2011) Chondroitinase activity can be transduced by a lentiviral vector in vitro and in vivo. J Neurosci Methods 199:208–213PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jianli Hu
    • 1
  • Gabrielle M. Curinga
    • 1
  • George M. Smith
    • 1
    Email author
  1. 1.Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, School of MedicineTemple UniversityPhiladelphiaUSA

Personalised recommendations