Abstract
Fluorescence fluctuation spectroscopy techniques allow the quantification of fluorescent molecules present at the nanomolar concentration level. After a brief introduction to the technique, this chapter presents a protocol including background information in order to measure and quantify the molecular interaction of two signaling proteins inside the living cell using fluorescence cross-correlation spectroscopy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169
Meseth U, Wohland T, Rigler R et al (1999) Resolution of fluorescence correlation measurements. Biophys J 76:1619–1631
Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886
Chen Y, Müller JD, So PTC et al (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567
Digman MA, Wiseman PW, Choi C et al (2009) Stoichiometry of molecular complexes at adhesions in living cells. Proc Natl Acad Sci U S A 106:2170–2175
Kolin DL, Wiseman PW (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49:141–164
Kapusta P, Wahl M, Benda A et al (2007) Fluorescence lifetime correlation spectroscopy. J Fluoresc 17:43–48
Barcellona ML, Gammon S, Hazlett T et al (2004) Polarized fluorescence correlation spectroscopy of DNA-DAPI complexes. Microsc Res Tech 65:205–217
Price ES, DeVore MS, Johnson CK et al (2010) Detecting intramolecular dynamics and multiple Förster resonance energy transfer states by fluorescence correlation spectroscopy. J Phys Chem B 114:5895–5902
Hassler K, Leutenegger M, Rigler P et al (2005) Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule. Opt Express 13:7415–7423
Wohland T, Shi X, Sankaran J et al (2010) Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18:10627–10641
Leutenegger M, Ringemann C, Lasser T et al (2012) Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). Opt Express 20:5243–5263
Needleman DJ, Xu Y, Mitchison TJ (2009) Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy. Biophys J 96:5050–5059
Hink MA (2012) Single-molecule microscopy using silicone oil immersion objective lenses. Biomed Scientist 2012:83–85
Dertinger T, Pacheco V, von der Hocht I et al (2007) Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements. ChemPhysChem 8:433–443
Müller BK, Zaychikov E, Bräuchle C et al (2005) Pulsed interleaved excitation. Biophys J 89:3508–3522
Koppel DE (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10:1938–1945
Maeder CI, Hink MA, Kinkhabwala A et al (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signaling. Nat Cell Biol 9:1319–1326
Foo YH, Naredi-Rainer N, Lamb DC et al (2012) Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy. Biophys J 102:1174–1183
Bacia K, Petrášek Z, Schwille P (2012) Correcting for spectral cross-talk in dual-color fluorescence cross-correlation spectroscopy. ChemPhysChem 13:1221–1231
Eggeling C, Widengren J, Brand L et al (2006) Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. J Phys Chem A 110:2979–2995
Shcherbakova D, Hink MA, Joosen L et al (2012) An orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and FRET imaging. J Am Chem Soc 134:7913–7923
Yu J, Christina Wjasow C, Backer JM (1998) Regulation of the p85-p110a phosphatidylinositol 3′-kinase. J Biol Chem 273:30199–30203
Skakun VV, Hink MA, Digris AV et al (2005) Global analysis of fluorescence fluctuation data. Eur Biophys J 34:323–334
Gregor I, Patra D, Enderlein J (2005) Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. ChemPhysChem 6:164–170
Kaputsa P (2010) Absolute diffusion coefficients: compilation of reference data for FCS calibration. Picoquant application note: http://www.picoquant.com/technotes/appnote_diffusion_coefficients.pdf
Adjobo-Hermans MWJ, Goedhart J, van Weeren L et al (2011) Real-time visualization of heterotrimeric G protein Gq activation in living cells. BMC Biol 9:32
Chen Y, Johnson J, Macdonald P et al (2010) Observing protein interactions and their stoichiometry in living cells by brightness analysis of fluorescence fluctuation experiments. Methods Enzymol 472:345–363
Haupts U, Maiti S, Schwille P et al (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 95:13573–13578
Schwille P, Kummer S, Heikal AA et al (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci U S A 97:151–156
Hendrix J, Flors C, Dedecker P et al (2008) Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94:4103–4113
Subach OM, Cranfill PJ, Davidson MW et al (2011) An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One 6:e28674
Goedhart J, von Stetten D, Noirclerc-Savoye M et al (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93 %. Nat Commun 3:751
Kremers GJ, Goedhart J, van den Heuvel DJ et al (2007) Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biogeosciences 46:3775–3783
Kremers GJ, Goedhart J, van Munster EB et al (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Biogeosciences 45:6570–6580
Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572
Shaner NC, Lin MZ, McKeown MR et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551
Shcherbo D, Murphy CS, Ermakova GV et al (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574
Acknowledgments
The author would like to thank Kevin Crosby, Max Tollenaere, Marten Postma, and Ronald Breedijk for their assistance during the experiments. This work was supported by Middelgroot and Echo investment grants from the Netherlands Organisation for Scientific Research (NWO).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this protocol
Cite this protocol
Hink, M.A. (2015). Fluorescence Correlation Spectroscopy. In: Verveer, P. (eds) Advanced Fluorescence Microscopy. Methods in Molecular Biology, vol 1251. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2080-8_8
Download citation
DOI: https://doi.org/10.1007/978-1-4939-2080-8_8
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-2079-2
Online ISBN: 978-1-4939-2080-8
eBook Packages: Springer Protocols