Skip to main content

Fluorescence Correlation Spectroscopy

  • Protocol
  • First Online:
Advanced Fluorescence Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1251))

Abstract

Fluorescence fluctuation spectroscopy techniques allow the quantification of fluorescent molecules present at the nanomolar concentration level. After a brief introduction to the technique, this chapter presents a protocol including background information in order to measure and quantify the molecular interaction of two signaling proteins inside the living cell using fluorescence cross-correlation spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    Article  CAS  PubMed  Google Scholar 

  2. Meseth U, Wohland T, Rigler R et al (1999) Resolution of fluorescence correlation measurements. Biophys J 76:1619–1631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chen Y, Müller JD, So PTC et al (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Digman MA, Wiseman PW, Choi C et al (2009) Stoichiometry of molecular complexes at adhesions in living cells. Proc Natl Acad Sci U S A 106:2170–2175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kolin DL, Wiseman PW (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49:141–164

    Article  CAS  PubMed  Google Scholar 

  7. Kapusta P, Wahl M, Benda A et al (2007) Fluorescence lifetime correlation spectroscopy. J Fluoresc 17:43–48

    Article  CAS  PubMed  Google Scholar 

  8. Barcellona ML, Gammon S, Hazlett T et al (2004) Polarized fluorescence correlation spectroscopy of DNA-DAPI complexes. Microsc Res Tech 65:205–217

    Article  CAS  PubMed  Google Scholar 

  9. Price ES, DeVore MS, Johnson CK et al (2010) Detecting intramolecular dynamics and multiple Förster resonance energy transfer states by fluorescence correlation spectroscopy. J Phys Chem B 114:5895–5902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hassler K, Leutenegger M, Rigler P et al (2005) Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule. Opt Express 13:7415–7423

    Article  CAS  PubMed  Google Scholar 

  11. Wohland T, Shi X, Sankaran J et al (2010) Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18:10627–10641

    Article  CAS  PubMed  Google Scholar 

  12. Leutenegger M, Ringemann C, Lasser T et al (2012) Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). Opt Express 20:5243–5263

    Article  CAS  PubMed  Google Scholar 

  13. Needleman DJ, Xu Y, Mitchison TJ (2009) Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy. Biophys J 96:5050–5059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hink MA (2012) Single-molecule microscopy using silicone oil immersion objective lenses. Biomed Scientist 2012:83–85

    Google Scholar 

  15. Dertinger T, Pacheco V, von der Hocht I et al (2007) Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements. ChemPhysChem 8:433–443

    Article  CAS  PubMed  Google Scholar 

  16. Müller BK, Zaychikov E, Bräuchle C et al (2005) Pulsed interleaved excitation. Biophys J 89:3508–3522

    Article  PubMed Central  PubMed  Google Scholar 

  17. Koppel DE (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10:1938–1945

    Article  Google Scholar 

  18. Maeder CI, Hink MA, Kinkhabwala A et al (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signaling. Nat Cell Biol 9:1319–1326

    Article  CAS  PubMed  Google Scholar 

  19. Foo YH, Naredi-Rainer N, Lamb DC et al (2012) Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy. Biophys J 102:1174–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bacia K, Petrášek Z, Schwille P (2012) Correcting for spectral cross-talk in dual-color fluorescence cross-correlation spectroscopy. ChemPhysChem 13:1221–1231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Eggeling C, Widengren J, Brand L et al (2006) Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. J Phys Chem A 110:2979–2995

    Article  CAS  PubMed  Google Scholar 

  22. Shcherbakova D, Hink MA, Joosen L et al (2012) An orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and FRET imaging. J Am Chem Soc 134:7913–7923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Yu J, Christina Wjasow C, Backer JM (1998) Regulation of the p85-p110a phosphatidylinositol 3′-kinase. J Biol Chem 273:30199–30203

    Article  CAS  PubMed  Google Scholar 

  24. Skakun VV, Hink MA, Digris AV et al (2005) Global analysis of fluorescence fluctuation data. Eur Biophys J 34:323–334

    Article  PubMed  Google Scholar 

  25. Gregor I, Patra D, Enderlein J (2005) Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. ChemPhysChem 6:164–170

    Article  CAS  PubMed  Google Scholar 

  26. Kaputsa P (2010) Absolute diffusion coefficients: compilation of reference data for FCS calibration. Picoquant application note: http://www.picoquant.com/technotes/appnote_diffusion_coefficients.pdf

  27. Adjobo-Hermans MWJ, Goedhart J, van Weeren L et al (2011) Real-time visualization of heterotrimeric G protein Gq activation in living cells. BMC Biol 9:32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chen Y, Johnson J, Macdonald P et al (2010) Observing protein interactions and their stoichiometry in living cells by brightness analysis of fluorescence fluctuation experiments. Methods Enzymol 472:345–363

    Article  CAS  PubMed  Google Scholar 

  29. Haupts U, Maiti S, Schwille P et al (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 95:13573–13578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Schwille P, Kummer S, Heikal AA et al (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci U S A 97:151–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hendrix J, Flors C, Dedecker P et al (2008) Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94:4103–4113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Subach OM, Cranfill PJ, Davidson MW et al (2011) An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One 6:e28674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Goedhart J, von Stetten D, Noirclerc-Savoye M et al (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93 %. Nat Commun 3:751

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kremers GJ, Goedhart J, van den Heuvel DJ et al (2007) Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biogeosciences 46:3775–3783

    CAS  Google Scholar 

  35. Kremers GJ, Goedhart J, van Munster EB et al (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Biogeosciences 45:6570–6580

    CAS  Google Scholar 

  36. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  37. Shaner NC, Lin MZ, McKeown MR et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Shcherbo D, Murphy CS, Ermakova GV et al (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Kevin Crosby, Max Tollenaere, Marten Postma, and Ronald Breedijk for their assistance during the experiments. This work was supported by Middelgroot and Echo investment grants from the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Hink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hink, M.A. (2015). Fluorescence Correlation Spectroscopy. In: Verveer, P. (eds) Advanced Fluorescence Microscopy. Methods in Molecular Biology, vol 1251. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2080-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2080-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2079-2

  • Online ISBN: 978-1-4939-2080-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics