Skip to main content

Fluorescence Resonance Energy Transfer Microscopy (FRET)

  • Protocol
  • First Online:
Advanced Fluorescence Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1251))

Abstract

FRET (Förster Resonance Energy Transfer) microscopy breaks the resolution limit of light to let us investigate the conformation and function of proteins within living cells. Intensity-based methods are the most popular and direct approach to detect FRET. Among them, detection of sensitized emission signals and ratio imaging of specially designed FRET sensors are routinely used in modern cell biology laboratories. In this chapter, we provide protocols for both these techniques. We guide the reader through the mathematical corrections necessary to calculate the sensitized emission image. We illustrate this approach with an example of studying the interaction of nexin (SNX1) proteins. In the ratio FRET protocol, we focus on monitoring changes in cellular concentration of cAMP with an EPAC-based FRET sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciruela F, Vilardaga JP, Fernandez-Dueñas F (2010) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 2:138–147

    Google Scholar 

  2. Brunger AT, Strop P, Vrljic V et al (2011) Three dimensional molecular modeling with single molecule FRET. J Struct Biol 173:497–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Xu X, Gerard ALV, Huang BCB et al (1998) Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res 26:2034–2035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nagai T, Sawano A, Park ES et al (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98:3197–3202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ponsioen B, Zhao J, Riedl J et al (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hertel F, Switalski A, Mintert-Jancke E et al (2011) A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells. PLOS One 6:e20855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sun Y, Wallrabe H, Seo S et al (2011) FRET microscopy in 2010: the legacy of Theodor Forster on the 100th anniversary of his birth. Chem Phys Chem 12:462–474

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Forster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 6:166–175

    Article  Google Scholar 

  9. Gordon G, Berry G, Liang XH et al (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wouters FS, Verveer PJ, Bastiaens PIH (2001) Imaging biochemistry inside cells. Trends Cell Biol 11:203–211

    Article  CAS  PubMed  Google Scholar 

  11. Jalink K, van Rheenen J (2009) FilterFRET: quantitative imaging of sensitized emission. Fret and Flim Techniques, vol. 33, 1st edn. Elsevier B.V., pp. 289–349

    Google Scholar 

  12. Zhong Q, Lazar CS, Tronchere H et al (2002) Endosomal localization and function of sorting nexin 1. Proc Natl Acad Sci USA 99:6767–6772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Klarenbeek JB, Goedhart J, Hink MA (2011) A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLOS One 6:e19170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  15. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  16. Shaner NC, Lin MZ, McKeown MR et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Stepanenko OV, Stepanenko OV, Shcherbakova DM et al (2011) Modern fluorescent proteins: from chromophore formation to novel intracellular applications. BioTechniques 51:313–318

    Article  PubMed  Google Scholar 

  18. Komatsu N, Aoki K, Yamada M et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chen H, Puhl HL, Koushik SV et al (2006) Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys J 91:39–41

    Article  Google Scholar 

  20. Goldman RD, Spector DL (2005) Live cell imaging: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  21. Tomazevic D, Likar B (2002) Comparative evaluation of retrospective shading correction methods. J Microsc 208:212–223

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kees Jalink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kedziora, K.M., Jalink, K. (2015). Fluorescence Resonance Energy Transfer Microscopy (FRET). In: Verveer, P. (eds) Advanced Fluorescence Microscopy. Methods in Molecular Biology, vol 1251. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2080-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2080-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2079-2

  • Online ISBN: 978-1-4939-2080-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics