Application of STED Microscopy to Cell Biology Questions

  • Natalia H. ReveloEmail author
  • Silvio O. Rizzoli
Part of the Methods in Molecular Biology book series (MIMB, volume 1251)


The increasing interest in “seeing” the molecular environment in biological systems has led to the recent quest for breaking the diffraction barrier in far-field fluorescence microscopy. The first nanoscopy method successfully applied to conventional biological probes was stimulated emission depletion microscopy (STED). It is based on a physical principle that instantly delivers diffraction-unlimited images, with no need for further computational processing: the excitation laser beam is overlaid with a doughnut-shaped depleting beam that switches off previously excited fluorophores, thereby resulting in what is effectively a smaller imaging volume. In this chapter we give an overview of several applications of STED microscopy to biological questions. We explain technical aspects of sample preparation and image acquisition that will help in obtaining good diffraction-unlimited pictures. We also present embedding techniques adapted for ultrathin sectioning, which allow optimal 3D resolutions in virtually all biological preparations.

Key words

Super-resolution microscopy STED Diffraction barrier Cell imaging Live imaging 



We thank Nicolai T. Urban for advice and for reading the manuscript, Felipe Opazo for providing images used in Fig. 4, and Christina Schäfer and Katharina Kröhnert for technical assistance. S.O.R. acknowledges the support of a Starting Grant from the European Research Council, Program FP7 (NANOMAP). N.H.R. acknowledges the support of the Deutsche Forschungsgemeinschaft (SFB 889).


  1. 1.
    Abbe E (1873) Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch für Mikroskopische Anat 9:413–418CrossRefGoogle Scholar
  2. 2.
    Hell SW, Dyba M, Jakobs S (2004) Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 14:599–609PubMedCrossRefGoogle Scholar
  3. 3.
    Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Nägerl UV, Willig KI, Hein B et al (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105:18982–18987PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782PubMedCrossRefGoogle Scholar
  6. 6.
    Dyba M, Jakobs S, Hell SW (2003) Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol 21:1303–1304PubMedCrossRefGoogle Scholar
  7. 7.
    Willig KI, Rizzoli SO, Westphal V et al (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939PubMedCrossRefGoogle Scholar
  8. 8.
    Kittel RJ, Wichmann C, Rasse TM et al (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312:1051–1054PubMedCrossRefGoogle Scholar
  9. 9.
    Westphal V, Rizzoli SO, Lauterbach MA et al (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320:246–249PubMedCrossRefGoogle Scholar
  10. 10.
    Willig KI, Kellner RR, Medda R et al (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3:721–723PubMedCrossRefGoogle Scholar
  11. 11.
    Rankin BR, Moneron G, Wurm CA et al (2011) Nanoscopy in a living multicellular organism expressing GFP. Biophys J 100:L63–L65PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Urban NT, Willig KI, Hell SW et al (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101:1277–1284PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Tønnesen J, Nadrigny F, Willig KI et al (2011) Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J 101:2545–2552PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Berning S, Willig KI, Steffens H et al (2012) Nanoscopy in a living mouse brain. Science 335:551PubMedCrossRefGoogle Scholar
  15. 15.
    Keller J, Schönle A, Hell SW (2007) Efficient fluorescence inhibition patterns for RESOLFT microscopy. Opt Express 15:3361–3371PubMedCrossRefGoogle Scholar
  16. 16.
    Wildanger D, Medda R, Kastrup L et al (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236:35–43PubMedCrossRefGoogle Scholar
  17. 17.
    Donnert G, Keller J, Wurm CA et al (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92:L67–L69PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Blom H, Rönnlund D, Scott L et al (2012) Nearest neighbor analysis of dopamine D1 receptors and Na(+)-K(+)-ATPases in dendritic spines dissected by STED microscopy. Microsc Res Tech 75:220–228PubMedCrossRefGoogle Scholar
  19. 19.
    Meyer L, Wildanger D, Medda R et al (2008) Dual-color STED microscopy at 30-nm focal-plane resolution. Small 4:1095–1100PubMedCrossRefGoogle Scholar
  20. 20.
    Schmidt R, Wurm CA, Jakobs S et al (2008) Spherical nanosized focal spot unravels the interior of cells. Nat Methods 5:539–544PubMedCrossRefGoogle Scholar
  21. 21.
    Bückers J, Wildanger D, Vicidomini G et al (2011) Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19:3130–3143PubMedCrossRefGoogle Scholar
  22. 22.
    Schmidt R, Wurm CA, Punge A et al (2009) Mitochondrial cristae revealed with focused light. Nano Lett 9:2508–2510PubMedCrossRefGoogle Scholar
  23. 23.
    Moneron G, Hell SW (2009) Two-photon excitation STED microscopy. Opt Express 17:14567–14573PubMedCrossRefGoogle Scholar
  24. 24.
    Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63:429–437PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Watanabe S, Punge A, Hollopeter G et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80–84PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Eggeling C, Ringemann C, Medda R et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162PubMedCrossRefGoogle Scholar
  27. 27.
    Leutenegger M, Eggeling C, Hell SW (2010) Analytical description of STED microscopy performance. Opt Express 18:26417–26429PubMedCrossRefGoogle Scholar
  28. 28.
    Galiani S, Harke B, Vicidomini G et al (2012) Strategies to maximize the performance of a STED microscope. Opt Express 20:7362–7374PubMedCrossRefGoogle Scholar
  29. 29.
    Donnert G, Keller J, Medda R et al (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103:11440–11445PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Rankin BR, Hell SW (2009) STED microscopy with a MHz pulsed stimulated-Raman-scattering source. Opt Express 17:15679–15684PubMedCrossRefGoogle Scholar
  31. 31.
    Wildanger D, Rittweger E, Kastrup L et al (2008) STED microscopy with a supercontinuum laser source. Opt Express 16:9614–9621PubMedCrossRefGoogle Scholar
  32. 32.
    Willig KI, Harke B, Medda R et al (2007) STED microscopy with continuous wave beams. Nat Methods 4:915–918PubMedCrossRefGoogle Scholar
  33. 33.
    Vicidomini G, Moneron G, Han KY et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8:571–573PubMedCrossRefGoogle Scholar
  34. 34.
    Moneron G, Medda R, Hein B et al (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18:1302–1309PubMedCrossRefGoogle Scholar
  35. 35.
    Müller T, Schumann C, Kraegeloh A (2012) STED microscopy and its applications: new insights into cellular processes on the nanoscale. Chemphyschem 13(8):1986–2000. doi: 10.1002/cphc.201100986 PubMedCrossRefGoogle Scholar
  36. 36.
    Hein B, Willig KI, Hell SW (2008) Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci U S A 105:14271–14276PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Morozova KS, Piatkevich KD, Gould TJ et al (2010) Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys J 99:L13–L15PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Willig KI, Stiel AC, Brakemann T et al (2011) Dual-label STED nanoscopy of living cells using photochromism. Nano Lett 11:3970–3973PubMedCrossRefGoogle Scholar
  39. 39.
    Hein B, Willig KI, Wurm CA et al (2010) Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. Biophys J 98:158–163PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Fitzpatrick JA, Yan Q, Sieber JJ et al (2009) STED nanoscopy in living cells using Fluorogen Activating Proteins. Bioconjug Chem 20:1843–1847PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Staudt T, Lang MC, Medda R et al (2007) 2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech 70:1–9PubMedCrossRefGoogle Scholar
  42. 42.
    Punge A, Rizzoli SO, Jahn R et al (2008) 3D reconstruction of high-resolution STED microscope images. Microsc Res Tech 71:644–650PubMedCrossRefGoogle Scholar
  43. 43.
    McKinney SA, Murphy CS, Hazelwood KL et al (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Ries J, Kaplan C, Platonova E et al (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9(6):582–584PubMedCrossRefGoogle Scholar
  45. 45.
    Opazo F, Levy M, Byrom M et al (2012) Aptamers as potential tools for super-resolution microscopy. Nat Methods 9:938–939PubMedCrossRefGoogle Scholar
  46. 46.
    Hoopmann P, Punge A, Barysch SV et al (2010) Endosomal sorting of readily releasable synaptic vesicles. Proc Natl Acad Sci U S A 107:19055–19060PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Neumann D, Bückers J, Kastrup L et al (2010) Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys 3:4PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Neuro- and Sensory PhysiologyUniversity Medical Center GöttingenGöttingenGermany
  2. 2.International Max Planck Research School for NeurosciencesGöttingenGermany
  3. 3.Deutsche Forschungsgemeinschaft Center for Molecular Physiology of the Brain/Excellence Cluster 171University of GöttingenGöttingenGermany

Personalised recommendations