Skip to main content

Analysis of Sinusoidal Drug Uptake Transporter Activities in Primary Human Hepatocytes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1250))

Abstract

Hepatic drug transporters play an important role in pharmacokinetics and drug–drug interactions. Among these membrane transporters, the sodium taurocholate cotransporting polypeptide (NTCP/SLC10A1), the organic anion transporting polypeptides (OATPs) 1B1 (SLCO1B1), 1B3 (SLCO1B3) and 2B1 (SLCO2B1), the organic anion transporter 2 (OAT2/SLC22A7) and the organic cation transporter 1 (OCT1/SLC22A1) are likely major ones, notably mediating sinusoidal uptake of various drugs or endogenous compounds, like bile acids, from blood into hepatocytes. Studying putative interactions of drugs, including those in development processes, with these transporters is an important issue. For this purpose, cultured human hepatocytes, that exhibit functional expression of NTCP, OATPs, OAT2 and OCT1, are considered as a relevant in vitro cellular model. This chapter describes a method allowing to accurately analyze NTCP, OATP, OAT2 and OCT1 transport activities in primary human hepatocyte cultures, which can be applied to the determination of potential interactions of drugs with these hepatic uptake transporters.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Giacomini KM, Huang SM, Tweedie DJ et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    Article  CAS  PubMed  Google Scholar 

  2. Muller F, Fromm MF (2011) Transporter-mediated drug-drug interactions. Pharmacogenomics 12:1017–1037

    Article  PubMed  Google Scholar 

  3. Klaassen CD, Aleksunes LM (2010) Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 62:1–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Funk C (2008) The role of hepatic transporters in drug elimination. Expert Opin Drug Metab Toxicol 4:363–379

    Article  CAS  PubMed  Google Scholar 

  5. Pfeifer ND, Hardwick RN, Brouwer KL (2014) Role of hepatic efflux transporters in regulating systemic and hepatocyte exposure to xenobiotics. Annu Rev Pharmacol Toxicol 54:509–535

    Article  CAS  PubMed  Google Scholar 

  6. Hagenbuch B, Meier PJ (1994) Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 93:1326–1331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126:322–342

    Article  CAS  PubMed  Google Scholar 

  8. Ho RH, Tirona RG, Leake BF et al (2006) Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130:1793–1806

    Article  CAS  PubMed  Google Scholar 

  9. Mita S, Suzuki H, Akita H et al (2006) Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab Dispos 34:1575–1581

    Article  CAS  PubMed  Google Scholar 

  10. Fenner KS, Jones HM, Ullah M et al (2012) The evolution of the OATP hepatic uptake transport protein family in DMPK sciences: from obscure liver transporters to key determinants of hepatobiliary clearance. Xenobiotica 42:28–45

    Article  CAS  PubMed  Google Scholar 

  11. Hagenbuch B, Gui C (2008) Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 38:778–801

    Article  CAS  PubMed  Google Scholar 

  12. Niemi M, Pasanen MK, Neuvonen PJ (2011) Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 63:157–181

    Article  CAS  PubMed  Google Scholar 

  13. Karlgren M, Vildhede A, Norinder U et al (2012) Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions. J Med Chem 55:4740–4763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Neuvonen PJ, Niemi M, Backman JT (2006) Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 80:565–581

    Article  CAS  PubMed  Google Scholar 

  15. Burckhardt G (2012) Drug transport by organic anion transporters (OATs). Pharmacol Ther 136:106–130

    Article  CAS  PubMed  Google Scholar 

  16. Burckhardt G, Burckhardt BC (2011) In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 201:29–104

    Article  CAS  PubMed  Google Scholar 

  17. Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251

    Article  CAS  PubMed  Google Scholar 

  18. Nies AT, Koepsell H, Damme K et al (2011) Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol 201:105–167

    Article  CAS  PubMed  Google Scholar 

  19. Prueksaritanont T, Chu X, Gibson C et al (2013) Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS J 15:629–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Giacomini KM, Huang SM (2013) Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther 94:3–9

    Article  CAS  PubMed  Google Scholar 

  21. Kindla J, Fromm MF, Konig J (2009) In vitro evidence for the role of OATP and OCT uptake transporters in drug-drug interactions. Expert Opin Drug Metab Toxicol 5:489–500

    Article  CAS  PubMed  Google Scholar 

  22. Brouwer KL, Keppler D, Hoffmaster KA et al (2013) In vitro methods to support transporter evaluation in drug discovery and development. Clin Pharmacol Ther 94:95–112

    Article  CAS  PubMed  Google Scholar 

  23. Bi YA, Kimoto E, Sevidal S et al (2012) In vitro evaluation of hepatic transporter-mediated clinical drug-drug interactions: hepatocyte model optimization and retrospective investigation. Drug Metab Dispos 40:1085–1092

    Article  CAS  PubMed  Google Scholar 

  24. Ramboer E, Vanhaecke T, Rogiers V et al (2013) Primary hepatocyte cultures as prominent in vitro tools to study hepatic drug transporters. Drug Metab Rev 45:196–217

    Article  CAS  PubMed  Google Scholar 

  25. Le Vee M, Noel G, Jouan E et al (2013) Polarized expression of drug transporters in differentiated human hepatoma HepaRG cells. Toxicol In Vitro 27:1979–1986

    Article  PubMed  Google Scholar 

  26. Jigorel E, Le Vee M, Boursier-Neyret C et al (2005) Functional expression of sinusoidal drug transporters in primary human and rat hepatocytes. Drug Metab Dispos 33:1418–1422

    Article  CAS  PubMed  Google Scholar 

  27. Konig J (2011) Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol 201:1–28

    Article  PubMed  Google Scholar 

  28. Tahara H, Kusuhara H, Maeda K et al (2006) Inhibition of oat3-mediated renal uptake as a mechanism for drug-drug interaction between fexofenadine and probenecid. Drug Metab Dispos 34:743–747

    Article  CAS  PubMed  Google Scholar 

  29. Enomoto A, Takeda M, Shimoda M et al (2002) Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther 301:797–802

    Article  CAS  PubMed  Google Scholar 

  30. Strom SC, Jirtle RL, Jones RS et al (1982) Isolation, culture, and transplantation of human hepatocytes. J Natl Cancer Inst 68:771–778

    CAS  PubMed  Google Scholar 

  31. Guguen-Guillouzo C, Campion JP, Brissot P et al (1982) High yield preparation of isolated human adult hepatocytes by enzymatic perfusion of the liver. Cell Biol Int Rep 6:625–628

    Article  CAS  PubMed  Google Scholar 

  32. David P, Viollon C, Alexandre E et al (1998) Metabolic capacities in cultured human hepatocytes obtained by a new isolating procedure from non-wedge small liver biopsies. Hum Exp Toxicol 17:544–553

    Article  CAS  PubMed  Google Scholar 

  33. Kim HM, Han SB, Hyun BH et al (1995) Functional human hepatocytes: isolation from small liver biopsy samples and primary cultivation with liver-specific functions. J Toxicol Sci 20:565–578

    Article  CAS  PubMed  Google Scholar 

  34. Lecluyse EL, Alexandre E (2010) Isolation and culture of primary hepatocytes from resected human liver tissue. Methods Mol Biol 640:57–82

    Article  CAS  PubMed  Google Scholar 

  35. Schaefer O, Ohtsuki S, Kawakami H et al (2012) Absolute quantification and differential expression of drug transporters, cytochrome P450 enzymes, and UDP-glucuronosyltransferases in cultured primary human hepatocytes. Drug Metab Dispos 40:93–103

    Article  CAS  PubMed  Google Scholar 

  36. Schroeder A, Eckhardt U, Stieger B et al (1998) Substrate specificity of the rat liver Na(+)-bile salt cotransporter in Xenopus laevis oocytes and in CHO cells. Am J Physiol 274:G370–G375

    CAS  PubMed  Google Scholar 

  37. Vavricka SR, Van Montfoort J, Ha HR et al (2002) Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 36:164–172

    Article  CAS  PubMed  Google Scholar 

  38. Gomez-Lechon MJ, Donato MT, Castell JV et al (2004) Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab 5:443–462

    Article  CAS  PubMed  Google Scholar 

  39. Goyak KM, Johnson MC, Strom SC et al (2008) Expression profiling of interindividual variability following xenobiotic exposures in primary human hepatocyte cultures. Toxicol Appl Pharmacol 231:216–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sugano K, Kansy M, Artursson P et al (2010) Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 9:597–614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Biological Resource Center (CHU Rennes) for providing us with human hepatocyte suspensions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Fardel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Le Vée, M., Jouan, E., Denizot, C., Parmentier, Y., Fardel, O. (2015). Analysis of Sinusoidal Drug Uptake Transporter Activities in Primary Human Hepatocytes. In: Vinken, M., Rogiers, V. (eds) Protocols in In Vitro Hepatocyte Research. Methods in Molecular Biology, vol 1250. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2074-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2074-7_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2073-0

  • Online ISBN: 978-1-4939-2074-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics