Skip to main content

Coculture and Long-Term Maintenance of Hepatocytes

  • Protocol
  • First Online:
Protocols in In Vitro Hepatocyte Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1250))

Abstract

The liver is the largest internal organ in mammals, serving a wide spectrum of vital functions. Loss of liver function due to drug toxicity, progressive fatty liver disease, or viral infection is a major cause of death in the United States of America. Pharmaceutical and cosmetic toxicity screening, basic research and the development of bioartificial liver devices require long-term hepatocyte culture techniques that sustain hepatocyte morphology and function. In recent years, several techniques have been developed that can support high levels of liver-specific gene expression, metabolic function, and synthetic activity for several weeks in culture. These include the collagen double gel configuration, hepatocyte spheroids, coculture with nonparenchymal cells, and micropatterned cocultures. This chapter will cover the current status of hepatocyte culture techniques, including media formulation, oxygen supply, and heterotypic cell–cell interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5:836–847

    Article  CAS  PubMed  Google Scholar 

  2. Nahmias Y, Berthiaume F, Yarmush ML (2007) Integration of technologies for hepatic tissue engineering. Adv Biochem Eng Biotechnol 103:309–329

    PubMed  Google Scholar 

  3. Block GD, Locker J, Bowen WC et al (1996) Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol 132:1133–1149

    Article  CAS  PubMed  Google Scholar 

  4. Paul SM, Mytelka DS, Dunwiddie CT et al (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214

    CAS  PubMed  Google Scholar 

  5. Pritchard JF, Jurima-Romet M, Reimer ML et al (2003) Making better drugs: decision gates in non-clinical drug development. Nat Rev Drug Discov 2:542–553

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez JV, Pizarro MD, Scandizzi AL et al (2008) Construction and performance of a minibioreactor suitable as experimental bioartificial liver. Artif Organs 32:323–328

    Article  CAS  PubMed  Google Scholar 

  7. Hewitt NJ, Lechon MJ, Houston JB et al (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234

    Article  CAS  PubMed  Google Scholar 

  8. Kamiya A, Kinoshita T, Ito Y et al (1999) Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J 18:2127–2136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Michalopoulos GK, Khan Z (2005) Liver regeneration, growth factors, and amphiregulin. Gastroenterology 128:503–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Nahmias Y, Casali M, Barbe L et al (2006) Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes. Hepatology 43:257–265

    Article  CAS  PubMed  Google Scholar 

  11. Richards CD, Brown TJ, Shoyab M et al (1992) Recombinant oncostatin M stimulates the production of acute phase proteins in HepG2 cells and rat primary hepatocytes in vitro. J Immunol 148:1731–1736

    CAS  PubMed  Google Scholar 

  12. Nyberg SL (2012) Bridging the gap: advances in artificial liver support. Liver Transpl 18(Suppl 2):S10–S14

    Article  PubMed  Google Scholar 

  13. Dunn JC, Tompkins RG, Yarmush ML (1991) Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog 7:237–245

    Article  CAS  PubMed  Google Scholar 

  14. Koide N, Shinji T, Tanabe T et al (1989) Continued high albumin production by multicellular spheroids of adult rat hepatocytes formed in the presence of liver-derived proteoglycans. Biochem Biophys Res Commun 161:385–391

    Article  CAS  PubMed  Google Scholar 

  15. Elliott NT, Yuan F (2011) A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 100:59–74

    Article  CAS  PubMed  Google Scholar 

  16. Guguen-Guillouzo C, Clement B, Baffet G et al (1983) Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp Cell Res 143:47–54

    Article  CAS  PubMed  Google Scholar 

  17. Bissell DM, Hammaker LE, Meyer UA (1973) Parenchymal cells from adult rat liver in nonproliferating monolayer culture: functional studies. J Cell Biol 59:722–734

    Article  CAS  PubMed  Google Scholar 

  18. Bhatia SN, Balis UJ, Yarmush ML et al (1999) Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 13: 1883–1900

    CAS  PubMed  Google Scholar 

  19. Nishikawa M, Kojima N, Komori K et al (2008) Enhanced maintenance and functions of rat hepatocytes induced by combination of on-site oxygenation and coculture with fibroblasts. J Biotechnol 133:253–260

    Article  CAS  PubMed  Google Scholar 

  20. Kidambi S, Yarmush RS, Novik E et al (2009) Oxygen-mediated enhancement of primary hepatocyte metabolism, functional polarization, gene expression, and drug clearance. Proc Natl Acad Sci U S A 106:15714–15719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Dunn JC, Yarmush ML, Koebe HG et al (1989) Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J 3:174–177

    CAS  PubMed  Google Scholar 

  22. Zakim D, Boyer T (1996) Hepatology: a textbook of liver disease, vol 1. W.B. Saunders Company, Philadelphia

    Google Scholar 

  23. Berthiaume F, Moghe PV, Toner M et al (1996) Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J 10:1471–1484

    CAS  PubMed  Google Scholar 

  24. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66

    Article  CAS  PubMed  Google Scholar 

  25. Yarmush ML, Toner M, Dunn JC et al (1992) Hepatic tissue engineering. Development of critical technologies. Ann N Y Acad Sci 665:238–252

    Article  CAS  PubMed  Google Scholar 

  26. Bhatia SN, Yarmush ML, Toner M (1997) Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J Biomed Mater Res 34:189–199

    Article  CAS  PubMed  Google Scholar 

  27. Kmiec Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161:III-XIII, 1–151

    Google Scholar 

  28. LeCouter J, Moritz DR, Li B et al (2003) Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299: 890–893

    Article  CAS  PubMed  Google Scholar 

  29. Cleaver O, Melton DA (2003) Endothelial signaling during development. Nat Med 9: 661–668

    Article  CAS  PubMed  Google Scholar 

  30. Gardner JP, Durso RJ, Arrigale RR et al (2003) L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. PNAS 100: 4498–4503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Nahmias Y, Schwartz RE, Hu WS et al (2006) Endothelium-mediated hepatocyte recruitment in the establishment of liver-like tissue in vitro. Tissue Eng 12:1627–1638

    Article  CAS  PubMed  Google Scholar 

  32. Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294:564–567

    Article  CAS  PubMed  Google Scholar 

  33. Balis UJ, Behnia K, Dwarakanath B et al (1999) Oxygen consumption characteristics of porcine hepatocytes. Metab Eng 1:49–62

    Article  CAS  PubMed  Google Scholar 

  34. Foy BD, Rotem A, Toner M et al (1994) A device to measure the oxygen uptake rate of attached cells: importance in bioartificial organ design. Cell Transplant 3:515–527

    CAS  PubMed  Google Scholar 

  35. Fisher RJ, Peattie RA (2007) Controlling tissue microenvironments: biomimetics, transport phenomena, and reacting systems. Adv Biochem Eng Biotechnol 103:1–73

    CAS  PubMed  Google Scholar 

  36. Fariss MW (1990) Oxygen toxicity: unique cytoprotective properties of vitamin E succinate in hepatocytes. Free Radic Biol Med 9:333–343

    Article  CAS  PubMed  Google Scholar 

  37. Martin H, Sarsat JP, Lerche-Langrand C et al (2002) Morphological and biochemical integrity of human liver slices in long-term culture: effects of oxygen tension. Cell Biol Toxicol 18:73–85

    Article  CAS  PubMed  Google Scholar 

  38. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A 83: 2496–2500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    Article  CAS  PubMed  Google Scholar 

  40. Berry MN, Grivell AR, Grivell MB et al (1997) Isolated hepatocytes: past, present and future. Cell Biol Toxicol 13:223–233

    Article  CAS  PubMed  Google Scholar 

  41. Moghe PV, Berthiaume F, Ezzell RM et al (1996) Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function. Biomaterials 17: 373–385

    Article  CAS  PubMed  Google Scholar 

  42. Abu-Absi SF, Friend JR, Hansen LK et al (2002) Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp Cell Res 274:56–67

    Article  CAS  PubMed  Google Scholar 

  43. Goulet F, Normand C, Morin O (1988) Cellular interactions promote tissue-specific function, biomatrix deposition and junctional communication of primary cultured hepatocytes. Hepatology 8:1010–1018

    Article  CAS  PubMed  Google Scholar 

  44. Morin O, Normand C (1986) Long-term maintenance of hepatocyte functional activity in co-culture: requirements for sinusoidal endothelial cells and dexamethasone. J Cell Physiol 129:103–110

    Article  CAS  PubMed  Google Scholar 

  45. Davidson AJ, Zon LI (2003) Biomedicine: love, honor, and protect (your liver). Science 299:835–837

    Article  CAS  PubMed  Google Scholar 

  46. Sugimachi K, Sosef MN, Baust JM et al (2004) Long-term function of cryopreserved rat hepatocytes in a coculture system. Cell Transplant 13:187–195

    Article  PubMed  Google Scholar 

  47. Bhandari RN, Riccalton LA, Lewis AL et al (2001) Liver tissue engineering: a role for co-culture systems in modifying hepatocyte function and viability. Tissue Eng 7:345–357

    Article  CAS  PubMed  Google Scholar 

  48. Khetani SR, Szulgit G, Rio JAD et al (2004) Exploring interactions between rat hepatocytes and nonparenchymal cells using gene expression profiling. Hepatology 40:545–554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Maria Shulman for technical advice. This work was funded by a European Research Council Starting Grant TMIHCV (project number 242699), a Marie Curie Reintegration Grant microLiverMaturation (project number 248417), the Israel-Japan Ministry of Science (award number 9645), the British Council BIRAX Regenerative Medicine award (number 33BX12HGYN) and HeMiBio, a jointly funded consortium by the European Commission and Cosmetics Europe as part of the SEURAT-1 cluster (project number HEALTH-F5-2010-266777).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaakov Nahmias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cohen, M., Levy, G., Nahmias, Y. (2015). Coculture and Long-Term Maintenance of Hepatocytes. In: Vinken, M., Rogiers, V. (eds) Protocols in In Vitro Hepatocyte Research. Methods in Molecular Biology, vol 1250. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2074-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2074-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2073-0

  • Online ISBN: 978-1-4939-2074-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics