Advertisement

Using Process Mining for Automatic Support of Clinical Pathways Design

  • Carlos Fernandez-Llatas
  • Bernardo Valdivieso
  • Vicente Traver
  • Jose Miguel Benedi
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1246)

Abstract

The creation of tools supporting the automatization of the standardization and continuous control of healthcare processes can become a significant helping tool for clinical experts and healthcare systems willing to reduce variability in clinical practice. The reduction in the complexity of design and deployment of standard Clinical Pathways can enhance the possibilities for effective usage of computer assisted guidance systems for professionals and assure the quality of the provided care. Several technologies have been used in the past for trying to support these activities but they have not been able to generate the disruptive change required to foster the general adoption of standardization in this domain due to the high volume of work, resources, and knowledge required to adequately create practical protocols that can be used in practice. This chapter proposes the use of the PALIA algorithm, based in Activity-Based process mining techniques, as a new technology to infer the actual processes from the real execution logs to be used in the design and quality control of healthcare processes.

Key words

Process mining Clinical Pathways Workflows Process standardization 

References

  1. 1.
    Every NR, Hochman J, Becker R, Kopecky S, Cannon CP (2000) Critical pathways. A review. Circulation 101:461–465CrossRefGoogle Scholar
  2. 2.
    The Cochrane Collaboration (2010) COCHRANE Library. http://www.cochrane.org/index.htm
  3. 3.
    PubMed Library (2010) National Library of Medicine and The National Institutes of Health PubMed Library. http://www.pubmed.gov
  4. 4.
    Peleg M, Boxwala AA, Bernstam E, Tu SW, Greenes RA, Shortliffe EH (2001) Sharable representation of clinical guidelines in GLIF: relationship to the arden syntax. J Biomed Inform 34(3):170–181PubMedCrossRefGoogle Scholar
  5. 5.
    Shahar Y, Miksch S, Johnson P (1998) The asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artif Intell Med 14(1–2):29–51PubMedCrossRefGoogle Scholar
  6. 6.
    WfMC (1999) Workflow management coalition terminology glossary. WFMC-TC-1011, Document Status Issue 3.0Google Scholar
  7. 7.
    Fernandez-Llatas C, Pileggi SF, Traver V, Benedi JM (2011) Timed parallel automaton: a mathematical tool for defining highly expressive formal workflows. In: Fifth Asia modelling symposium (AMS), 2011 IEEE computer society, pp 56–61Google Scholar
  8. 8.
    Naranjo JC, Fernandez-Llatas C, Pomes S, Valdivieso B (2006) Care-paths: searching the way to implement pathways. Comput Cardiol 33:285–288Google Scholar
  9. 9.
    Sedlmayr M, Rose T, Röhrig R, Meister M (2006) A workflow approach towards GLIF execution. In: Proceedings of the European conference on artificial intelligence (ECAI), Riva del GardaGoogle Scholar
  10. 10.
    Fox J, Black E, Chronakis I, Dunlop R, Patkar V, South M, Thomson R (2008) From guidelines to careflows: modelling and supporting complex clinical processes. Stud Health Technol Inform 139:44–62. PMID: 18806320PubMedGoogle Scholar
  11. 11.
    Fernandez-Llatas C, Meneu T, Traver V, Benedi J-M (2013) Applying evidence-based medicine in telehealth: an interactive pattern recognition approximation. Int J Environ Res Public Health 10(11):5671–5682PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    van der Aalst WMP, van Dongen BF, Herbst J, Maruster L, Schimm G, Weijters AJMM (2003) Workflow mining: a survey of issues and approaches. Data Knowl Eng 47:237–267CrossRefGoogle Scholar
  13. 13.
    Fernandez-Llatas C, Meneu T, Benedi JM, Traver V (2010) Activity-based process mining for clinical pathways computer aided design. In: 32th annual international conference of the IEEE engineering in medicine and biology society, pp 6178–6181. PMID: 21097153Google Scholar
  14. 14.
    Cook J, Du Z (2005) Discovery thread interactions in a concurrent system. J Syst Softw 7:285–297CrossRefGoogle Scholar
  15. 15.
    van der Aalst WMP (2011) Process mining: discovery, conformance and enhancement of business processes. Springer, Berlin [u.a.]Google Scholar
  16. 16.
    VI Framework Program I S T Project 507019 (2008) PIPS Project. Personalised Information Platform for life and health ServicesGoogle Scholar
  17. 17.
    Heart Cycle Consortium (2008) VII Framework Program IST Project 216695: compliance and effectiveness in HF and CHD closed-loop management 2008–2011Google Scholar
  18. 18.
    Weijters AJMM, Ribeiro JTS (2011) Flexible heuristics miner (FHM). In: 2011 IEEE symposium on computational intelligence and data mining (CIDM), pp 310–317Google Scholar
  19. 19.
    de Medeiros AKA, Weijters AJMM, van der Aalst WMP (2007) Genetic process mining: an experimental evaluation. Data Min Knowl Discov 14(2):245–304CrossRefGoogle Scholar
  20. 20.
    van der Aalst W, Weijters A, Maruster L (2004) Workflow mining: discovering process models from event logs. IEEE Trans Knowl Data Eng 16:1128–1142CrossRefGoogle Scholar
  21. 21.
    Alves de Medeiros AK, Dongen BF, van der Aalst WMP, Weijters AJMM (2004) Process mining extending the alpha algorithm to mine short loops. Technical report, WP113 Beta Paper Series Eindhoven University of TechnologyGoogle Scholar
  22. 22.
    Fernandez-Llatas C, Sanchez C, Traver V, Benedi JM (2008) TPAEngine: un motor de workflows basado en TPAs. In: Ciencia y Tecnologia en la Frontera. ISSN:1665-9775Google Scholar
  23. 23.
    Fernandez-Llatas C, Benedi J-M, Garcia-Gomez JM, Traver V (2013) Process mining for individualized behavior modeling using wireless tracking in nursing homes. Sensors 13(11):15434–15451PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2015

Authors and Affiliations

  • Carlos Fernandez-Llatas
    • 1
  • Bernardo Valdivieso
    • 2
  • Vicente Traver
    • 1
  • Jose Miguel Benedi
    • 3
  1. 1.Instituto ITACA, Universitat Politècnica de ValènciaValènciaSpain
  2. 2.Unidad Mixta de Reingeniera de Procesos Sociosanitarios (eRPSS)Instituto de Investigación Sanitaria del Hospital Universitario y Politécnico La FeValenciaSpain
  3. 3.PRHLTUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations