Skip to main content

SSR Genotyping

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1245))

Abstract

SSR genotyping involves the use of simple sequence repeats (SSRs) as DNA markers. SSRs, also called microsatellites, are a type of repetitive DNA sequence ubiquitous in most plant genomes. SSRs contain repeats of a motif sequence 1–6 bp in length. Due to this structure SSRs frequently undergo mutations, mainly due to DNA polymerase errors, which involve the addition or subtraction of a repeat unit. Hence, SSR sequences are highly polymorphic and may be readily used for detection of allelic variation within populations. SSRs are present within both genic and nongenic regions and are occasionally transcribed, and hence may be identified in expressed sequence tags (ESTs) as well as more commonly in nongenic DNA sequences. SSR genotyping involves the design of DNA-based primers to amplify SSR sequences from extracted genomic DNA, followed by amplification of the SSR repeat region using polymerase chain reaction, and subsequent visualization of the resulting DNA products, usually using gel electrophoresis. These procedures are described in this chapter. SSRs have been one of the most favored molecular markers for plant genotyping in the last 20 years due to their high levels of polymorphism, wide distribution across most plant genomes, and ease of use and will continue to be a useful tool in many species for years to come.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Morgante M, Rafalski A, Biddle P et al (1994) Genetic mapping and variability of 7 soybean simple sequence repeat loci. Genome 37:763–769

    Article  CAS  PubMed  Google Scholar 

  3. Cox R, Mirkin SM (1997) Characteristic enrichment of DNA repeats in different genomes. Proc Natl Acad Sci U S A 94:5237–5242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Strand M, Prolla TA, Liskay RM et al (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–276

    Article  CAS  PubMed  Google Scholar 

  5. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A 84:9054–9058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  8. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  CAS  PubMed  Google Scholar 

  9. Squirrell J, Hollingsworth PM, Woodhead M et al (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12:1339–1348

    Article  CAS  PubMed  Google Scholar 

  10. Mohan M, Nair S, Bhagwat A et al (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  11. Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain-reaction. Am J Hum Genet 44:388–396

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Devos KM, Bryan GJ, Collins AJ et al (1995) Application of 2 microsatellite sequences in wheat storage proteins as molecular markers. Theor Appl Genet 90:247–252

    Article  CAS  PubMed  Google Scholar 

  13. Plaschke J, Ganal MW, Roder MS (1995) Detection of genetic diversity in closely-related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    CAS  PubMed  Google Scholar 

  14. Yang GP, Maroof MAS, Xu CG et al (1994) Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet 245:187–194

    Article  CAS  PubMed  Google Scholar 

  15. Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Chung SM, Staub JE, Chen JF (2006) Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome 49:219–229

    Article  CAS  PubMed  Google Scholar 

  17. Tang S, Yu JK, Slabaugh MB et al (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  CAS  PubMed  Google Scholar 

  18. Hopkins MS, Casa AM, Wang T et al (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247

    Article  CAS  Google Scholar 

  19. Goldstein DB, Roemer GW, Smith DA et al (1999) The use of microsatellite variation to infer population structure and demographic history in a natural model system. Genetics 151:797–801

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Goldstein DB, Pollock DD (1997) Launching microsatellites: A review of mutation processes and methods of phylogenetic inference. J Hered 88:335–342

    Article  CAS  PubMed  Google Scholar 

  21. Barrier M, Friar E, Robichaux R et al (2000) Interspecific evolution in plant microsatellite structure. Gene 241:101–105

    Article  CAS  PubMed  Google Scholar 

  22. Zou J, Fu DH, Gong HH et al (2011) De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa. Plant J 68:212–224

    Article  CAS  PubMed  Google Scholar 

  23. Zhou WC, Kolb FL, Bai GH et al (2003) Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed 122:40–46

    Article  CAS  Google Scholar 

  24. Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5:505–510

    Article  Google Scholar 

  25. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos T R Soc B 363:557–572

    Article  CAS  Google Scholar 

  26. Varshney RK, Nayak SN, May GD et al (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  27. Maniatis T, Jeffrey A, Vandesande H (1975) Chain-length determination of small double-stranded and single-stranded DNA molecules by polyacrylamide gel electrophoresis. Biochemistry 14:3787–3794

    Article  CAS  PubMed  Google Scholar 

  28. Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 10:609–618

    Article  CAS  PubMed  Google Scholar 

  29. Mason AS, Nelson MN, Castello M-C et al (2011) Genotypic effects on the frequency of homoeologous and homologous recombination in Brassica napus × B. carinata hybrids. Theor Appl Genet 122:543–553

    Article  PubMed  Google Scholar 

  30. Nelson MN, Mason AS, Castello M-C et al (2009) Microspore culture preferentially selects unreduced (2n) gametes from an interspecific hybrid of Brassica napus L. × Brassica carinata Braun. Theor Appl Genet 119:497–505

    Article  PubMed  Google Scholar 

  31. Nicolas SD, Mignon GL, Eber F et al (2007) Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics 175:487–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annaliese S. Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mason, A.S. (2015). SSR Genotyping. In: Batley, J. (eds) Plant Genotyping. Methods in Molecular Biology, vol 1245. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1966-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1966-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1965-9

  • Online ISBN: 978-1-4939-1966-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics