Skip to main content

Molecular Marker Applications in Plants

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1245))

Abstract

Individuals within a population of a sexually reproducing species will have some degree of heritable genomic variation caused by mutations, insertion/deletions (INDELS), inversions, duplications, and translocations. Such variation can be detected and screened using molecular, or genetic, markers. By definition, molecular markers are genetic loci that can be easily tracked and quantified in a population and may be associated with a particular gene or trait of interest. This chapter will review the current major applications of molecular markers in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed Central  PubMed  Google Scholar 

  2. Duran C, Edwards D, Batley J (2009) Genetic maps and the use of synteny. In: Somers DJ, Langridge P, Gustafson JP (eds) Plant genomics: methods and protocols. Humana Press, New York, NY, pp 41–56

    Chapter  Google Scholar 

  3. Duran C, Edwards D, Batley J (2009) Molecular marker discovery and genetic map visualisation. In: Edwards D (ed) Applied bioinformatics. Springer, New York, pp 165–189

    Chapter  Google Scholar 

  4. Edwards D, Wilcox S, Barrero RA, Fleury D, Cavanagh CR, Forrest KL, Hayden MJ, Moolhuijzen P, Keeble-Gagnere G, Bellgard MI, Lorenc MT, Shang CA, Baumann U, Taylor JM, Morell MK, Langridge P, Appels R, Fitzgerald A (2012) Bread matters: a national initiative to profile the genetic diversity of Australian wheat. Plant Biotechnol J 10:703–708

    Article  CAS  PubMed  Google Scholar 

  5. Hayward A, Dalton-Morgan J, Mason A, Zander M, Edwards D, Batley J (2012) SNP discovery and applications in Brassica napus. J Plant Biotechnol 39:49–61

    Article  Google Scholar 

  6. Kaur S, Cogan NO, Ye G, Baillie RC, Hand ML, Ling AE, McGearey AK, Kaur J, Hopkins CJ, Todorovic M, Mountford H, Edwards D, Batley J, Burton W, Salisbury P, Gororo N, Marcroft S, Kearney G, Smith KF, Forster JW, Spangenberg GC (2009) Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theor Appl Genet 120:71–83

    Article  CAS  PubMed  Google Scholar 

  7. Pilet ML, Delourme R, Foisset N, Renard M (1998) Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in Winter rapeseed (Brassica napus L.). Theor Appl Genet 96:23–30

    Article  Google Scholar 

  8. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114: 67–80

    Article  CAS  PubMed  Google Scholar 

  9. Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I (2011) The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet 122:1075–1090

    Article  CAS  PubMed  Google Scholar 

  10. Tollenaere R, Hayward A, Dalton-Morgan J, Campbell E, Lee JRM, Lorenc MT, Manoli S, Stiller J, Raman R, Raman H, Edwards D, Batley J (2012) Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next-generation sequencing. Plant Biotechnol J 10:709–715

    Article  CAS  PubMed  Google Scholar 

  11. Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  CAS  PubMed  Google Scholar 

  12. Edwards D, Batley J, Cogan NOI, Forster JW, Chagné D (2007) Single nucleotide polymorphism discovery. In: Oraguzie N, Rikkerink E, Gardiner S, Silva H (eds) Association mapping in plants. Springer, New York, pp 53–76

    Chapter  Google Scholar 

  13. Love C, Logan E, Erwin T, Kaur J, Lim GAC, Hopkins C, Batley J, James N, May S, Spangenberg G, Edwards D (2006) Integrating and interrogating diverse Brassica data within an EnsEMBL structured database. Proceedings of the joint meeting of the fourteenth crucifer genetics workshop and fourth ishs symposium on Brassicas. Acta Hort 706:77–82

    CAS  Google Scholar 

  14. Bevan M, Murphy G (1999) The small, the large and the wild: the value of comparison in plant genomics. Trends Genet 15:211–214

    Article  CAS  PubMed  Google Scholar 

  15. Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10

    Article  CAS  PubMed  Google Scholar 

  16. Galvão VC, Nordstrom KJV, Lanz C, Sulz P, Mathieu J, Pose D, Schmid M, Weigel D, Schneeberger K (2012) Synteny-based mapping-by-sequencing enabled by targeted enrichment. Plant J 71:517–526

    PubMed  Google Scholar 

  17. McClean PE, Mamidi S, McConnell M, Chikara S, Lee R (2010) Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genomics 11:184

    Article  PubMed Central  PubMed  Google Scholar 

  18. Zhu HY, Kim DJ, Baek JM, Choi HK, Ellis LC, Kuester H, McCombie WR, Peng HM, Cook DR (2003) Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiol 131:1018–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genomics 2008: 574927

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  CAS  PubMed  Google Scholar 

  21. Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  22. Cowling WA, Balázs E (2010) Prospects and challenges for genome-wide association and genomic selection in oilseed Brassica species. Genome 53:1024–1028

    Article  CAS  PubMed  Google Scholar 

  23. Atwell S, Huang YS, Vilhjalmsso BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99

    Article  CAS  PubMed  Google Scholar 

  25. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Physiol Plant Mol Biol 54:357–374

    Article  CAS  Google Scholar 

  26. Oraguzie N (2007) An overview of association mapping. In: Oraguzie N, Rikkerink E, Gardiner S, Silva H (eds) Association mapping in plants. Springer, New York, pp 1–9

    Chapter  Google Scholar 

  27. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    Article  CAS  PubMed  Google Scholar 

  28. Waugh R, Jannink JL, Muehlbauer GJ, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:218–222

    Article  CAS  PubMed  Google Scholar 

  29. Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  30. Chagné D, Batley J, Edwards D, Forster JW (2007) Single nucleotide polymorphisms genotyping in plants. In: Oraguzie N, Rikkerink E, Gardiner S, Silva H (eds) Association mapping in plants. Springer, New York, pp 77–94

    Chapter  Google Scholar 

  31. Duran C, Eales D, Marshall D, Imelfort M, Stiller J, Berkman PJ, Clark T, McKenzie M, Appleby N, Batley J, Basford K, Edwards D (2010) Future tools for association mapping in crop plants. Genome 53:1017–1023

    Article  CAS  PubMed  Google Scholar 

  32. Yan JB, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4:e8451

    Article  PubMed Central  PubMed  Google Scholar 

  33. Guerra FP, Wegrzyn JL, Sykes R, Davis MF, Stanton BJ, Neale DB (2013) Association genetics of chemical wood properties in black poplar (Populus nigra). New Phytol 197:162–176

    Article  CAS  PubMed  Google Scholar 

  34. Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Somers DJ, Langridge P, Gustafson JP (eds) Plant genomics: methods and protocols. Humana Press, New York, NY, pp 19–39

    Chapter  Google Scholar 

  35. Semagn K, Bjornstad A, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568

    CAS  Google Scholar 

  36. Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  37. Hong CP, Piao ZY, Kang TW, Batley J, Yang TJ, Hur YK, Bhak J, Park BS, Edwards D, Lim YP (2007) Genomic distribution of simple sequence repeats in Brassica rapa. Mol Cells 23:349–356

    CAS  PubMed  Google Scholar 

  38. Chèvre AM, Barret P, Eber F, Dupuy P, Brun H, Tanguy X, Renard M (1997) Selection of stable Brassica napus-B.juncea recombinant lines resistant to blackleg (Leptosphaeria maculans): identification of molecular markers, chromosomal and genomic origin of the introgression. Theor Appl Genet 95:1104–1111

    Article  Google Scholar 

  39. Somers DJ, Rakow G, Prabhu VK, Friesen KRD (2001) Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome 1077–1082

    Google Scholar 

  40. Hansen M, Hallden C, Nilsson NO, Sall T (1997) Marker-assisted selection of restored male-fertile Brassica napus plants using a set of dominant RAPD markers. Mol Breed 3: 449–456

    Article  CAS  Google Scholar 

  41. Tanhuanpää PK, Vilkki JP, Vilkki HJ (1995) Association of a RAPD marker with linolenic acid concentration in the seed oil of rapeseed (Brassica napus L). Genome 38:414–416

    Article  PubMed  Google Scholar 

  42. Barker GLA, Edwards KJ (2009) A genome-wide analysis of single nucleotide polymorphism diversity in the world's major cereal crops. Plant Biotechnol J 7:318–325

    Article  CAS  PubMed  Google Scholar 

  43. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Article  PubMed Central  PubMed  Google Scholar 

  44. Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8

    Article  CAS  Google Scholar 

  45. Syvänen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:S5–S10

    Article  PubMed  Google Scholar 

  46. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  47. Meuwissen T (2007) Genomic selection: marker assisted selection on a genome wide scale. J Anim Breed Genet 124:321–322

    Article  PubMed  Google Scholar 

  48. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110:453–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Yang HA, Tao Y, Zheng ZQ, Li CD, Sweetingham MW, Howieson JG (2012) Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 13:318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Jiang HC, Feng YT, Bao L, Li X, Gao GJ, Zhang QL, Xiao JH, Xu CG, He YQ (2012) Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breed 30:1679–1688

    Article  CAS  Google Scholar 

  51. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  PubMed Central  PubMed  Google Scholar 

  52. Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552

    Article  CAS  PubMed  Google Scholar 

  53. Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J, Pleban T, Zamir D, Fernie AR (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20:509–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  CAS  PubMed  Google Scholar 

  55. Liu YS, Gur A, Ronen G, Causse M, Damidaux R, Buret M, Hirschberg J, Zamir D (2003) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol J 1:195–207

    Article  CAS  PubMed  Google Scholar 

  56. Tieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee HJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57:887–896

    Article  CAS  PubMed  Google Scholar 

  57. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci U S A 103:12981–12986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Kamenetzky L, Asis R, Bassi S, de Godoy F, Bermudez L, Fernie AR, Van Sluys MA, Vrebalov J, Giovannoni JJ, Rossi M, Carrari F (2010) Genomic analysis of wild tomato introgressions determining metabolism- and yield-associated traits. Plant Physiol 152:1772–1786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Howell PM, Marshall DF, Lydiate DJ (1996) Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39:348–358

    Article  CAS  PubMed  Google Scholar 

  61. Zou J, Zhu JL, Huang SM, Tian ET, Xiao Y, Fu DH, Tu JX, Fu TD, Meng JL (2010) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120:283–290

    Article  PubMed  Google Scholar 

  62. Cowling WA (2007) Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crop Res 104:103–111

    Article  Google Scholar 

  63. Foster JT, Allan GJ, Chan AP, Rabinowicz PD, Ravel J, Jackson PJ, Keim P (2010) Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol 10:13

    Article  PubMed Central  PubMed  Google Scholar 

  64. Allan G, Williams A, Rabinowicz PD, Chan AP, Ravel J, Keim P (2008) Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol 55:365–378

    Article  CAS  Google Scholar 

  65. Bagavathiannan MV, Julier B, Barre P, Gulden RH, Van Acker RC (2010) Genetic diversity of feral alfalfa (Medicago sativa L.) populations occurring in Manitoba, Canada and comparison with alfalfa cultivars: an analysis using SSR markers and phenotypic traits. Euphytica 173:419–432

    Article  Google Scholar 

  66. Pradhan A, Nelson MN, Plummer JA, Cowling WA, Yan GJ (2011) Characterization of Brassica nigra collections using simple sequence repeat markers reveals distinct groups associated with geographical location, and frequent mislabelling of species identity. Genome 54:50–63

    Article  PubMed  Google Scholar 

  67. Wang J, Kaur S, Cogan NOI, Dobrowolski MP, Salisbury PA, Burton WA, Baillie R, Hand M, Hopkins C, Forster JW, Smith KF, Spangenberg G (2009) Assessment of genetic diversity in Australian canola (Brassica napus L.) cultivars using SSR markers. Crop Pasture Sci 60:1193–1201

    Article  CAS  Google Scholar 

  68. Edwards D, Forster J, Chagné D, Batley J (2007) What are SNPs? In: Oraguzie N, Rikkerink E, Gardiner S, Silva H (eds) Association mapping in plants. Springer, New York, pp 41–52

    Chapter  Google Scholar 

  69. Fourmann M, Barret P, Froger N, Baron C, Charlot F, Delourme R, Brunel D (2002) From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map. Theor Appl Genet 105:1196–1206

    Article  CAS  PubMed  Google Scholar 

  70. Ferguson ME, Hearne SJ, Close TJ, Wanamaker S, Moskal WA, Town CD, de Young J, Marri PR, Rabbi IY, de Villiers EP (2012) Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theor Appl Genet 124:685–695

    Article  CAS  PubMed  Google Scholar 

  71. Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Muller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–U960

    Article  CAS  PubMed  Google Scholar 

  72. He GH, Prakash C (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Resour Crop Evol 48:347–352

    Article  Google Scholar 

  73. Hyten DL, Song QJ, Zhu YL, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci U S A 103:16666–16671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Levi A, Thomas CE, Keinath AP, Wehner TC (2001) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evo 48:559–566

    Article  Google Scholar 

  75. Song K, Osborn TC (1992) Polyphyletic origins of Brassica napus – new evidence based on organelle and nuclear RFLP analyses. Genome 35:992–1001

    Article  Google Scholar 

  76. Chen S, Nelson MN, Chevre AM, Jenczewski E, Li ZY, Mason AS, Meng JL, Plummer JA, Pradhan A, Siddique KHM, Snowdon RJ, Yan GJ, Zhou WJ, Cowling WA (2011) Trigenomic bridges for Brassica improvement. Crit Rev Plant Sci 30:524–547

    Article  CAS  Google Scholar 

  77. Yu FQ, Gugel RK, Kutcher HR, Peng G, Rimmer SR (2013) Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus x B. rapa subsp. sylvestris. Theor Appl Genet 126:307–315

    Article  CAS  PubMed  Google Scholar 

  78. Hayward A, McLanders J, Campbell E, Edwards D, Batley J (2012) Genomic advances will herald new insights into the Brassica: Leptosphaeria maculans pathosystem. Plant Biol 14:1–10

    Article  CAS  PubMed  Google Scholar 

  79. Lysak MA, Koch MA (2011) Phylogeny, genome, and karyotype evolution of crucifers (Brassicaceae). In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 1–31

    Chapter  Google Scholar 

  80. Hu Z, Huang S, Sun M, Wang H, Hua W (2012) Development and application of single nucleotide polymorphism markers in the polyploid Brassica napus by 454 sequencing of expressed sequence tags. Plant Breed 131:293–299

    Article  CAS  Google Scholar 

  81. Schranz ME, Song BH, Windsor AJ, Mitchell-Olds T (2007) Comparative genomics in the Brassicaceae: a family-wide perspective. Curr Opin Plant Biol 10:168–175

    Article  CAS  PubMed  Google Scholar 

  82. Trick M, Long Y, Meng JL, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346

    Article  CAS  PubMed  Google Scholar 

  83. Mayer KFX, Waugh R, Langridge P et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    CAS  PubMed  Google Scholar 

  84. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  85. Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C (2012) Genome-wide SNP detection, validation, and development of an 8K array for apple. PLoS One 7:e31745

    Article  PubMed Central  PubMed  Google Scholar 

  86. Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arus P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7:e35668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. You FM, Deal KR, Wang J, Britton MT, Fass JN, Lin D, Dandekar A, Leslie CA, Aradhya M, Luo MC, Dvorak J (2012) Genome-wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms. BMC Genomics 13:354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS, Henry RJ (2009) Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J 7:347–354

    Article  CAS  PubMed  Google Scholar 

  89. Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 12:389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. van Orsouw NJ, Hogers RCJ, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, van der Poel H, van Oeveren J, Verstegen H, van Eijk MJT (2007) Complexity reduction of polymorphic sequences (CRoPS (TM)): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 2:e1172

    Article  PubMed Central  PubMed  Google Scholar 

  91. Hendre PS, Kamalakannan R, Varghese M (2012) High-throughput and parallel SNP discovery in selected candidate genes in Eucalyptus camaldulensis using Illumina NGS platform. Plant Biotechnol J 10:646–656

    Article  CAS  PubMed  Google Scholar 

  92. Kharabian-Masouleh A, Waters DL, Reinke RF, Henry RJ (2011) Discovery of polymorphisms in starch-related genes in rice germplasm by amplification of pooled DNA and deeply parallel sequencing. Plant Biotechnol J 9:1074–1085

    Article  CAS  PubMed  Google Scholar 

  93. You FM, Huo N, Deal KR, Gu YQ, Luo MC, McGuire PE, Dvorak J, Anderson OD (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics 12:59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Berkman PJ, Lai KT, Lorenc MT, Edwards D (2012) Next-generation sequencing applications for wheat crop improvement. Am J Bot 99:365–371

    Article  CAS  PubMed  Google Scholar 

  95. Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L, Lai KT, Campbell E, Kubalakova M, Simkova H, Batley J, Dolezel J, Hernandez P, Edwards D (2012) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet 124:423–432

    Article  CAS  PubMed  Google Scholar 

  96. Hernandez P, Martis M, Dorado G, Pfeifer M, Galvez S, Schaaf S, Jouve N, Simkova H, Valarik M, Dolezel J, Mayer KFX (2012) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386

    Article  CAS  PubMed  Google Scholar 

  97. Lai K, Berkman PJ, Lorenc MT, Duran C, Smits L, Manoli S, Stiller J, Edwards D (2012) WheatGenome.info: an integrated database and portal for wheat genome information. Plant Cell Physiol 53:e2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Batley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hayward, A.C., Tollenaere, R., Dalton-Morgan, J., Batley, J. (2015). Molecular Marker Applications in Plants. In: Batley, J. (eds) Plant Genotyping. Methods in Molecular Biology, vol 1245. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1966-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1966-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1965-9

  • Online ISBN: 978-1-4939-1966-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics