Skip to main content

Generation of BAC Transgenic Mice for Functional Analysis of Neural Circuits

  • Protocol
  • First Online:
Neural Tracing Methods

Part of the book series: Neuromethods ((NM,volume 92))

Abstract

Functional analysis of neural circuits in the living brain is an exceptional challenge that has been greatly advanced in the modern molecular genetics era by the development of elegant techniques for marking and manipulating genetically defined neuronal subsets. Technologies of this nature are enabling neuroscientists to probe the causal role of specific neuronal populations in sensory information processing, complex animal behaviors, and brain dysfunction in a myriad of neurological disorders. Gains in these areas have been especially catalyzed by the development and expansion of optogenetics, specifically, the use of channelrhodopsin-2 (ChR2) for inducible and reversible control of neuronal firing with blue light. Here we provide detailed methods based on our recent success in developing BAC transgenic mouse lines with functional ChR2 expression in diverse genetically-defined neuronal subsets. In principle this BAC transgenic strategy can be implemented to express other transgenes of interest or can be further applied to achieve stable transgenic expression of ChR2 and other microbial opsin variants in additional diverse cell types of the mammalian nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gong S et al (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27(37):9817–9823

    Article  CAS  PubMed  Google Scholar 

  2. Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15(9):859–865

    Article  CAS  PubMed  Google Scholar 

  3. Gong S, Kus L, Heintz N (2010) Rapid bacterial artificial chromosome modification for large-scale mouse transgenesis. Nat Protoc 5(10):1678–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gong S et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925

    Article  CAS  PubMed  Google Scholar 

  5. Kozorovitskiy Y et al (2012) Recurrent network activity drives striatal synaptogenesis. Nature 485(7400):646–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Witten IB et al (2011) Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72(5):721–733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wan Y, Feng G, Calakos N (2011) Sapap3 deletion causes mGluR5-dependent silencing of AMPAR synapses. J Neurosci 31(46):16685–16691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chen M et al (2011) Sapap3 deletion anomalously activates short-term endocannabinoid-mediated synaptic plasticity. J Neurosci 31(26):9563–9573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Higley MJ et al (2011) Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum. PLoS One 6(4):e19155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Witten IB et al (2010) Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330(6011):1677–1681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ding JB et al (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67(2):294–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lobo MK et al (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330(6002):385–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kravitz AV et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466(7306):622–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hnasko TS et al (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65(5):643–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gittis AH et al (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30(6):2223–2234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kim JC et al (2009) Linking genetically defined neurons to behavior through a broadly applicable silencing allele. Neuron 63(3):305–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gertler TS, Chan CS, Surmeier DJ (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28(43):10814–10824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445(7128):643–647

    Article  CAS  PubMed  Google Scholar 

  19. Lobo MK et al (2007) Genetic control of instrumental conditioning by striatopallidal neuron-specific S1P receptor Gpr6. Nat Neurosci 10(11):1395–1397

    Article  CAS  PubMed  Google Scholar 

  20. Day M et al (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9(2):251–259

    Article  CAS  PubMed  Google Scholar 

  21. Zhao S et al (2010) Fluorescent labeling of newborn dentate granule cells in GAD67-GFP transgenic mice: a genetic tool for the study of adult neurogenesis. PLoS One 5(9):e12506

    Article  PubMed Central  PubMed  Google Scholar 

  22. Yu-Taeger L et al (2012) A novel BACHD transgenic rat exhibits characteristic neuropathological features of Huntington disease. J Neurosci 32(44):15426–15438

    Article  CAS  PubMed  Google Scholar 

  23. Cannon JR et al (2013) Expression of human E46K-mutated alpha-synuclein in BAC-transgenic rats replicates early-stage Parkinson's disease features and enhances vulnerability to mitochondrial impairment. Exp Neurol 240:44–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bateup HS et al (2008) Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat Neurosci 11(8):932–939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Doyle JP et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135(4):749–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Heiman M et al (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135(4):738–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Schmidt EF et al (2012) Identification of the cortical neurons that mediate antidepressant responses. Cell 149(5):1152–1163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhao S et al (2011) Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8(9):745–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Halassa MM et al (2011) Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat Neurosci 14(9):1118–1120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Guo ZV et al (2014) Flow of cortical activity underlying a tactile decision in mice. Neuron 81(1):179–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hull C, Regehr WG (2012) Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron 73(1):149–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ren J et al (2011) Habenula "cholinergic" neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69(3):445–452

    Article  CAS  PubMed  Google Scholar 

  33. Hagglund M et al (2010) Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 13(2):246–252

    Article  PubMed  Google Scholar 

  34. Ciotta G et al (2011) Recombineering BAC transgenes for protein tagging. Methods 53(2):113–119

    Article  CAS  PubMed  Google Scholar 

  35. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37(1):67–75

    Article  CAS  PubMed  Google Scholar 

  36. Liu P, Jenkins NA, Copeland NG (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13(3):476–484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yu D et al (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97(11):5978–5983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhang Y et al (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128

    Article  CAS  PubMed  Google Scholar 

  39. Muyrers JP et al (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27(6):1555–1557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Van Keuren ML et al (2009) Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res 18(5):769–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Abe K et al (2004) Establishment of an efficient BAC transgenesis protocol and its application to functional characterization of the mouse Brachyury locus. Exp Anim 53(4):311–320

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi R et al (2000) Generation of transgenic rats with YACs and BACs: preparation procedures and integrity of microinjected DNA. Exp Anim 49(3):229–233

    Article  CAS  PubMed  Google Scholar 

  43. Feng G, Lu J, Gross J (2004) Generation of transgenic mice. Methods Mol Med 99:255–267

    CAS  PubMed  Google Scholar 

  44. Ittner LM, Gotz J (2007) Pronuclear injection for the production of transgenic mice. Nat Protoc 2(5):1206–1215

    Article  CAS  PubMed  Google Scholar 

  45. Vintersten K, Testa G, Stewart AF (2004) Microinjection of BAC DNA into the pronuclei of fertilized mouse oocytes. Methods Mol Biol 256:141–158

    CAS  PubMed  Google Scholar 

  46. Truett GE et al (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29(1):52, 54

    CAS  PubMed  Google Scholar 

  47. Chan CS et al (2012) Strain-specific regulation of striatal phenotype in Drd2-eGFP BAC transgenic mice. J Neurosci 32(27):9124–9132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Yang XW et al (1999) BAC-mediated gene-dosage analysis reveals a role for Zipro1 (Ru49/Zfp38) in progenitor cell proliferation in cerebellum and skin. Nat Genet 22(4):327–335

    Article  CAS  PubMed  Google Scholar 

  49. Lin C et al (2009) Construction and characterization of a doxycycline-inducible transgenic system in Msx2 expressing cells. Genesis 47(5):352–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kramer PF et al (2011) Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice. J Neurosci 31(1):126–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Ting JT, Feng G (2014) Recombineering strategies for developing next generation BAC transgenic tools for optogenetics and beyond. Front Behav Neurosci 8:111

    Article  PubMed Central  PubMed  Google Scholar 

  52. Testa G et al (2004) BAC engineering for the generation of ES cell-targeting constructs and mouse transgenes. Methods Mol Biol 256:123–139

    CAS  PubMed  Google Scholar 

  53. Hill F et al (2000) BAC trimming: minimizing clone overlaps. Genomics 64(1):111–113

    Article  CAS  PubMed  Google Scholar 

  54. Chao HT et al (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468(7321):263–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Belforte JE et al (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13(1):76–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Gong S et al (2002) Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res 12(12):1992–1998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Dr. Bernd Gloss for providing the iTV1 plasmid and for significant contributions on the BAC recombineering and electroelution procedures described in this work. We thank Dr. Karl Deisseroth for providing the original ChR2(H134R)-EYFP plasmid. The EL250 strain used for BAC recombineering was generously provided by Dr. Neal Copeland. This work was supported in part by an American Recovery and Reinvestment Act grant from the US National Institute of Mental Health to G.F. (RC1-MH088434), a National Alliance for Research on Schizophrenia and Depression: The Brain and Behavior Research Foundation Young Investigator Award to J.T.T., and US National Institutes of Health Ruth L. Kirschstein National Research Service Awards to J.T.T. (F32-MH084460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan T. Ting Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ting, J.T., Feng, G. (2015). Generation of BAC Transgenic Mice for Functional Analysis of Neural Circuits. In: Arenkiel, B. (eds) Neural Tracing Methods. Neuromethods, vol 92. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1963-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1963-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1962-8

  • Online ISBN: 978-1-4939-1963-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics