Skip to main content

Remote Control of Neural Activity Using Chemical Genetics

  • Protocol
  • First Online:
Book cover Neural Tracing Methods

Part of the book series: Neuromethods ((NM,volume 92))

Abstract

Understanding how the nervous system functions requires a methodological toolbox for the manipulation of neuronal circuits. Over the last decade, there has been an explosion in the availability of methods to map and manipulate genetically defined populations of neurons. The control of neural signaling via pharmacological receptor-ligand interactions, or chemical genetics, allows for the modulation of neural signaling at an intermediate time scale and provides a complimentary approach to other technologies such as optogenetics. Here, we review the variety of chemical genetic techniques that are currently available and discuss the considerations that must be undertaken when choosing a technique for a particular experimental system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Figee M, Wielaard I, Mazaheri A, Denys D (2013) Neurosurgical targets for compulsivity: what can we learn from acquired brain lesions? Neurosci Biobehav Rev 37(3):328–339. doi:10.1016/j.neubiorev.2013.01.005

    Article  PubMed  Google Scholar 

  2. Yamamoto M, Wada N, Kitabatake Y, Watanabe D, Anzai M, Yokoyama M, Teranishi Y, Nakanishi S (2003) Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain. J Neurosci 23(17):6759–6767

    CAS  PubMed  Google Scholar 

  3. Murray AJ, Sauer JF, Riedel G, McClure C, Ansel L, Cheyne L, Bartos M, Wisden W, Wulff P (2011) Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory. Nat Neurosci 14(3):297–299. doi:10.1038/nn.2751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wulff P, Arenkiel BR (2012) Chemical genetics: receptor-ligand pairs for rapid manipulation of neuronal activity. Curr Opin Neurobiol 22(1):54–60. doi:10.1016/j.conb.2011.10.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. doi:10.1038/nn1525

    Article  CAS  PubMed  Google Scholar 

  6. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. doi:10.1146/annurev-neuro-061010-113817

    Article  CAS  PubMed  Google Scholar 

  7. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824. doi:10.1038/39807

    Article  CAS  PubMed  Google Scholar 

  8. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543

    Article  CAS  PubMed  Google Scholar 

  9. Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA (2008) TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 57(5):746–759. doi:10.1016/j.neuron.2007.12.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tobin D, Madsen D, Kahn-Kirby A, Peckol E, Moulder G, Barstead R, Maricq A, Bargmann C (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35(2):307–318

    Article  CAS  PubMed  Google Scholar 

  11. Zemelman BV, Nesnas N, Lee GA, Miesenbock G (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci U S A 100(3):1352–1357. doi:10.1073/pnas.242738899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Arenkiel BR, Klein ME, Davison IG, Katz LC, Ehlers MD (2008) Genetic control of neuronal activity in mice conditionally expressing TRPV1. Nat Methods 5(4):299–302. doi:10.1038/nmeth.1190

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Ross RA (2003) Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol 140(5):790–801. doi:10.1038/sj.bjp.0705467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fernandes ES, Fernandes MA, Keeble JE (2012) The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 166(2):510–521. doi:10.1111/j.1476-5381.2012.01851.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A (2010) Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 5(8):602–606. doi:10.1038/nnano.2010.125

    Article  CAS  PubMed  Google Scholar 

  16. Raymond V, Sattelle DB (2002) Novel animal-health drug targets from ligand-gated chloride channels. Nat Rev Drug Discov 1(6):427–436. doi:10.1038/nrd821

    Article  CAS  PubMed  Google Scholar 

  17. Slimko EM, McKinney S, Anderson DJ, Davidson N, Lester HA (2002) Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels. J Neurosci 22(17):7373–7379

    CAS  PubMed  Google Scholar 

  18. Li P, Slimko EM, Lester HA (2002) Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel. FEBS Lett 528(1–3):77–82

    CAS  PubMed  Google Scholar 

  19. Slimko EM, Lester HA (2003) Codon optimization of Caenorhabditis elegans GluCl ion channel genes for mammalian cells dramatically improves expression levels. J Neurosci Methods 124(1):75–81

    Article  CAS  PubMed  Google Scholar 

  20. Lerchner W, Xiao C, Nashmi R, Slimko EM, van Trigt L, Lester HA, Anderson DJ (2007) Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel. Neuron 54(1):35–49. doi:10.1016/j.neuron.2007.02.030

    Article  CAS  PubMed  Google Scholar 

  21. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, Fanselow MS, Luthi A, Anderson DJ (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468(7321):270–276. doi:10.1038/nature09553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470(7333):221–226. doi:10.1038/nature09736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Oishi Y, Williams RH, Agostinelli L, Arrigoni E, Fuller PM, Mochizuki T, Saper CB, Scammell TE (2013) Role of the medial prefrontal cortex in cataplexy. J Neurosci 33(23):9743–9751. doi:10.1523/JNEUROSCI.0499-13.2013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Frazier SJ, Cohen BN, Lester HA (2013) An engineered glutamate-gated chloride (GluCl) channel for sensitive, consistent neuronal silencing by ivermectin. J Biol Chem 288(29):21029–21042. doi:10.1074/jbc.M112.423921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Campo-Soria C, Chang Y, Weiss DS (2006) Mechanism of action of benzodiazepines on GABAA receptors. Br J Pharmacol 148(7):984–990. doi:10.1038/sj.bjp.0706796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sancar F, Ericksen SS, Kucken AM, Teissere JA, Czajkowski C (2007) Structural determinants for high-affinity zolpidem binding to GABA-A receptors. Mol Pharmacol 71(1):38–46. doi:10.1124/mol.106.029595

    Article  CAS  PubMed  Google Scholar 

  27. Buhr A, Baur R, Sigel E (1997) Subtle changes in residue 77 of the gamma subunit of alpha1beta2gamma2 GABAA receptors drastically alter the affinity for ligands of the benzodiazepine binding site. J Biol Chem 272(18):11799–11804

    Article  CAS  PubMed  Google Scholar 

  28. Cope DW, Wulff P, Oberto A, Aller MI, Capogna M, Ferraguti F, Halbsguth C, Hoeger H, Jolin HE, Jones A, McKenzie AN, Ogris W, Poeltl A, Sinkkonen ST, Vekovischeva OY, Korpi ER, Sieghart W, Sigel E, Somogyi P, Wisden W (2004) Abolition of zolpidem sensitivity in mice with a point mutation in the GABAA receptor gamma2 subunit. Neuropharmacology 47(1):17–34. doi:10.1016/j.neuropharm.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  29. Ogris W, Poltl A, Hauer B, Ernst M, Oberto A, Wulff P, Hoger H, Wisden W, Sieghart W (2004) Affinity of various benzodiazepine site ligands in mice with a point mutation in the GABA(A) receptor gamma2 subunit. Biochem Pharmacol 68(8):1621–1629. doi:10.1016/j.bcp.2004.07.020

    Article  CAS  PubMed  Google Scholar 

  30. Wulff P, Goetz T, Leppa E, Linden AM, Renzi M, Swinny JD, Vekovischeva OY, Sieghart W, Somogyi P, Korpi ER, Farrant M, Wisden W (2007) From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat Neurosci 10(7):923–929. doi:10.1038/nn1927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sumegi M, Fukazawa Y, Matsui K, Lorincz A, Eyre MD, Nusser Z, Shigemoto R (2012) Virus-mediated swapping of zolpidem-insensitive with zolpidem-sensitive GABA(A) receptors in cortical pyramidal cells. J Physiol 590(Pt 7):1517–1534. doi:10.1113/jphysiol.2012.227538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Magnus CJ, Lee PH, Atasoy D, Su HH, Looger LL, Sternson SM (2011) Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333(6047):1292–1296. doi:10.1126/science.1206606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Eisele JL, Bertrand S, Galzi JL, Devillers-Thiery A, Changeux JP, Bertrand D (1993) Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366(6454):479–483. doi:10.1038/366479a0

    Article  CAS  PubMed  Google Scholar 

  34. Grutter T, de Carvalho LP, Dufresne V, Taly A, Edelstein SJ, Changeux JP (2005) Molecular tuning of fast gating in pentameric ligand-gated ion channels. Proc Natl Acad Sci U S A 102(50):18207–18212. doi:10.1073/pnas.0509024102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Atasoy D, Betley JN, Su HH, Sternson SM (2012) Deconstruction of a neural circuit for hunger. Nature 488(7410):172–177. doi:10.1038/nature11270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Masseck OA, Rubelowski JM, Spoida K, Herlitze S (2011) Light- and drug-activated G-protein-coupled receptors to control intracellular signalling. Exp Physiol 96(1):51–56. doi:10.1113/expphysiol.2010.055517

    CAS  PubMed  Google Scholar 

  37. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144. doi:10.1146/annurev.neuro.27.070203.144206

    Article  CAS  PubMed  Google Scholar 

  38. Lechner HA, Lein ES, Callaway EM (2002) A genetic method for selective and quickly reversible silencing of mammalian neurons. J Neurosci 22(13):5287–5290, doi:20026527

    CAS  PubMed  Google Scholar 

  39. Marina N, Abdala AP, Trapp S, Li A, Nattie EE, Hewinson J, Smith JC, Paton JF, Gourine AV (2010) Essential role of Phox2b-expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and expiration. J Neurosci 30(37):12466–12473. doi:10.1523/JNEUROSCI.3141-10.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J, Neve R, Poirazi P, Silva AJ (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat Neurosci 12(11):1438–1443. doi:10.1038/nn.2405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Wehr M, Hostick U, Kyweriga M, Tan A, Weible AP, Wu H, Wu W, Callaway EM, Kentros C (2009) Transgenic silencing of neurons in the mammalian brain by expression of the allatostatin receptor (AlstR). J Neurophysiol 102(4):2554–2562. doi:10.1152/jn.00480.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Gosgnach S, Lanuza GM, Butt SJ, Saueressig H, Zhang Y, Velasquez T, Riethmacher D, Callaway EM, Kiehn O, Goulding M (2006) V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440(7081):215–219. doi:10.1038/nature04545

    Article  CAS  PubMed  Google Scholar 

  43. Tan EM, Yamaguchi Y, Horwitz GD, Gosgnach S, Lein ES, Goulding M, Albright TD, Callaway EM (2006) Selective and quickly reversible inactivation of mammalian neurons in vivo using the Drosophila allatostatin receptor. Neuron 51(2):157–170. doi:10.1016/j.neuron.2006.06.018

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Narayan S, Geiman E, Lanuza GM, Velasquez T, Shanks B, Akay T, Dyck J, Pearson K, Gosgnach S, Fan CM, Goulding M (2008) V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60(1):84–96. doi:10.1016/j.neuron.2008.09.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Nielsen KJ, Callaway EM, Krauzlis RJ (2012) Viral vector-based reversible neuronal inactivation and behavioral manipulation in the macaque monkey. Front Syst Neurosci 6:48. doi:10.3389/fnsys.2012.00048

    Article  PubMed Central  PubMed  Google Scholar 

  46. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168. doi:10.1073/pnas.0700293104

    Article  PubMed Central  PubMed  Google Scholar 

  47. Bender D, Holschbach M, Stocklin G (1994) Synthesis of n.c.a. carbon-11 labelled clozapine and its major metabolite clozapine-N-oxide and comparison of their biodistribution in mice. Nucl Med Biol 21(7):921–925

    Article  CAS  PubMed  Google Scholar 

  48. Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, Nonneman RJ, Hartmann J, Moy SS, Nicolelis MA, McNamara JO, Roth BL (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63(1):27–39. doi:10.1016/j.neuron.2009.06.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Ferguson SM, Eskenazi D, Ishikawa M, Wanat MJ, Phillips PE, Dong Y, Roth BL, Neumaier JF (2011) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14(1):22–24. doi:10.1038/nn.2703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121(4):1424–1428. doi:10.1172/JCI46229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL, Kentros C, Mayford M (2012) Generation of a synthetic memory trace. Science 335(6075):1513–1516. doi:10.1126/science.1214985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ray RS, Corcoran AE, Brust RD, Kim JC, Richerson GB, Nattie E, Dymecki SM (2011) Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333(6042):637–642. doi:10.1126/science.1205295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Michaelides M, Anderson SA, Ananth M, Smirnov D, Thanos PK, Neumaier JF, Wang GJ, Volkow ND, Hurd YL (2013) Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J Clin Invest 123(12):5342–5350. doi:10.1172/JCI72117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Carter ME, Soden ME, Zweifel LS, Palmiter RD (2013) Genetic identification of a neural circuit that suppresses appetite. Nature 503(7474):111–114. doi:10.1038/nature12596

    Article  CAS  PubMed  Google Scholar 

  55. Becnel J, Johnson O, Majeed ZR, Tran V, Yu B, Roth BL, Cooper RL, Kerut EK, Nichols CD (2013) DREADDs in Drosophila: a pharmacogenetic approach for controlling behavior, neuronal signaling, and physiology in the fly. Cell Rep 4(5):1049–1059. doi:10.1016/j.celrep.2013.08.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew J. Murray or Peer Wulff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Murray, A.J., Wulff, P. (2015). Remote Control of Neural Activity Using Chemical Genetics. In: Arenkiel, B. (eds) Neural Tracing Methods. Neuromethods, vol 92. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1963-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1963-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1962-8

  • Online ISBN: 978-1-4939-1963-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics