Skip to main content

Live Cell Imaging of FM4-64, a Tool for Tracing the Endocytic Pathways in Arabidopsis Root Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 1242)

Abstract

Confocal live imaging of the amphiphilic styryl dye FM4-64 is a valuable technique to monitor organelle dynamics and in particular endocytic pathways. After application in plants, FM4-64 immediately stains the plasma membrane and is then integrated on vesicles following endomembrane system-dependent internalization processes. Over time, FM4-64 becomes distributed throughout the full vesicular network from the plasma membrane to the vacuole, including the components of the secretory pathways. Here we provide succinct examples of the many important developmental processes in plants that rely on endocytosis and describe two suitable methods to trace the endocytic pathways in Arabidopsis thaliana root cells based on the uptake of FM4-64.

Key words

  • Endocytosis
  • FM4-64
  • Confocal microscopy
  • Root
  • Epidermal cells

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1902-4_9
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1902-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cram WJ (1980) Pinocytosis in plants. New Phytol 84:1–17

    CrossRef  Google Scholar 

  2. Gradmann D, Robinson DG (1989) Does turgor prevent endocytosis in plant cells? Plant Cell Environ 12:151–154

    CrossRef  Google Scholar 

  3. Hawes C, Crooks K, Coleman J, Satiat-Jeunemaitre B (1995) Endocytosis in plants: fact or artefact? Plant Cell Environ 18:1245–1252

    CrossRef  Google Scholar 

  4. Geldner N, Friml J, Stierhof Y-D, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    CAS  PubMed  CrossRef  Google Scholar 

  5. Baluška F, Šamaj J, Hlavacka A, Kendrick-Jones J, Volkmann D (2004) Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55:463–473

    PubMed  CrossRef  Google Scholar 

  6. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P et al (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    CAS  PubMed  CrossRef  Google Scholar 

  7. Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ et al (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    CAS  PubMed  CrossRef  Google Scholar 

  8. Betz WJ, Mao F, Smith CB (1996) Imaging exocytosis and endocytosis. Curr Opin Neurobiol 6:365–371

    CAS  PubMed  CrossRef  Google Scholar 

  9. Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    CAS  PubMed  CrossRef  Google Scholar 

  10. Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792

    CAS  PubMed  CrossRef  Google Scholar 

  11. Hoffmann J, Mendgen K (1998) Endocytosis and membrane turnover in the germ tube of Uromyces fabae. Fungal Genet Biol 24:77–85

    PubMed  CrossRef  Google Scholar 

  12. Belanger KD, Quatrano RS (2000) Membrane recycling occurs during asymmetric tip growth and cell plate formation in Fucus distichus zygotes. Protoplasma 212:24–37

    CrossRef  Google Scholar 

  13. Meckel T, Hurst AC, Thiel G, Homann U (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K+-channel KAT1. Plant J 39:182–193

    CAS  PubMed  CrossRef  Google Scholar 

  14. Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  15. Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C et al (2008) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci U S A 105:17812–17817

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  16. Kakar K, Zhang H, Scheres B, Dhonukshe P (2013) CLASP-mediated cortical microtubule organization guides PIN polarization axis. Nature 495:529–533

    CAS  PubMed  CrossRef  Google Scholar 

  17. Jaillais Y, Fobis-Loisy I, Miège C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–109

    CAS  PubMed  CrossRef  Google Scholar 

  18. Tanaka H, Kitakura S, De Rycke R, De Groodt R, Friml J (2009) Fluorescence imaging-based screen identifies ARF GEF component of early endosomal trafficking. Curr Biol 19:391–397

    CAS  PubMed  CrossRef  Google Scholar 

  19. Nodzyński T, Feraru MI, Hirsch S, De Rycke R, Niculaes C, Boerjan W et al (2013) Retromer subunits VPS35A and VPS29 mediate prevacuolar compartment (PVC) function in Arabidopsis. Mol Plant 6(6):1849–1862

    PubMed  CrossRef  Google Scholar 

  20. Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T, Paciorek T et al (2010) ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci U S A 107:21890–21895

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  21. Jelínková A, Malínská K, Simon S, Kleine-Vehn J, Pařezová M, Pejchar P et al (2010) Probing plant membranes with FM dyes: tracking, dragging or blocking? Plant J 61:883–892

    PubMed  CrossRef  Google Scholar 

  22. Low PS, Chandra S (1994) Endocytosis in plants. Annu Rev Plant Physiol Plant Mol Biol 45:609–631

    CAS  CrossRef  Google Scholar 

  23. Robinson DG, Jiang L, Schumacher K (2008) The endosomal system of plants: charting new and familiar territories. Plant Physiol 147:1482–1492

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  24. Jürgens G (2004) Membrane trafficking in plants. Annu Rev Cell Dev Biol 20:481–504

    PubMed  CrossRef  Google Scholar 

  25. Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F (2005) The endocytic network in plants. Trends Cell Biol 15:425–433

    PubMed  CrossRef  Google Scholar 

  26. Hicks GR, Raikhel NV (2010) Advances in dissecting endomembrane trafficking with small molecules. Curr Opin Plant Biol 13:706–713

    CAS  PubMed  CrossRef  Google Scholar 

  27. Reyes FC, Buono R, Otegui MS (2011) Plant endosomal trafficking pathways. Curr Opin Plant Biol 14:666–673

    CAS  PubMed  CrossRef  Google Scholar 

  28. Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    PubMed Central  PubMed  CrossRef  Google Scholar 

  29. Sharfman M, Bar M, Ehrlich M, Schuster S, Melech-Bonfil S, Ezer R et al (2011) Endosomal signaling of the tomato leucine-rich repeat receptor-like protein LeEix2. Plant J 68:413–423

    CAS  PubMed  CrossRef  Google Scholar 

  30. Dhonukshe P, Tanaka H, Goh T, Ebine K, Mähönen AP, Prasad K et al (2008) Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456:962–966

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  31. Kleine-Vehn J, Wabnik K, Martinière A, Łangowski L, Willig K, Naramoto S et al (2011) Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol 7:540

    PubMed Central  PubMed  CrossRef  Google Scholar 

  32. Etxeberria E, Baroja-Fernandez E, Muñoz FJ, Pozueta-Romero J (2005) Sucrose-inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells. Plant Cell Physiol 46:474–481

    CAS  PubMed  CrossRef  Google Scholar 

  33. Surpin M, Raikhel N (2004) Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5:100–109

    CAS  PubMed  CrossRef  Google Scholar 

  34. Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537–542

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  35. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    CAS  PubMed  CrossRef  Google Scholar 

  36. Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738–2754

    CAS  PubMed  CrossRef  Google Scholar 

  37. Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  38. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Doležal K et al (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    CAS  PubMed  CrossRef  Google Scholar 

  39. Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  40. Ruiz Rosquete M, Barbez E, Kleine-Vehn J (2012) Cellular auxin homeostasis: gatekeeping is housekeeping. Mol Plant 5:772–786

    CAS  CrossRef  Google Scholar 

  41. Peer WA, Blakeslee JJ, Yang H, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4:487–504

    CAS  PubMed  CrossRef  Google Scholar 

  42. Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K et al (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    CAS  PubMed  CrossRef  Google Scholar 

  43. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    CAS  PubMed  CrossRef  Google Scholar 

  44. Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    PubMed  CrossRef  Google Scholar 

  45. Grunewald W, Friml J (2010) The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J 29:2700–2714

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  46. Kleine-Vehn J, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 24:447–473

    CAS  PubMed  CrossRef  Google Scholar 

  47. Wiśniewska J, Xu J, Seifertová D, Brewer PB, Růžička K, Blilou I et al (2006) Polar PIN localization directs auxin flow in plants. Science 312:883

    PubMed  CrossRef  Google Scholar 

  48. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD et al (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527

    CAS  PubMed  CrossRef  Google Scholar 

  49. Ito E, Fujimoto M, Ebine K, Uemura T, Ueda T, Nakano A (2012) Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J 69:204–216

    CAS  PubMed  CrossRef  Google Scholar 

  50. Kitakura S, Vanneste S, Robert S, Löfke C, Teichmann T, Tanaka H et al (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23:1920–1931

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  51. Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P et al (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143:111–121

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  52. Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma B et al (2013) Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell 25:499–516

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  53. Paciorek T, Zažímalová E, Ruthardt N, Petrášek J, Stierhof Y-D, Kleine-Vehn J et al (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256

    CAS  PubMed  CrossRef  Google Scholar 

  54. Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  CrossRef  Google Scholar 

  55. Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci 107:22344–22349

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  56. Ding Z, Galván-Ampudia CS, Demarsy E, Łangowski L, Kleine-Vehn J, Fan Y et al (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–452

    CAS  PubMed  CrossRef  Google Scholar 

  57. Zhang KX, Xu HH, Yuan TT, Zhang L, Lu YT (2013) Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis. Plant J 76:308–321

    CAS  PubMed  Google Scholar 

  58. Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA et al (2011) Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J 67:817–826

    PubMed  CrossRef  Google Scholar 

  59. Abas L, Benjamins R, Malenica N, Paciorek T, Wiśniewska J, Moulinier-Anzola JC et al (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8:249–256

    CAS  PubMed  CrossRef  Google Scholar 

  60. Baster P, Robert S, Kleine-Vehn J, Vanneste S, Kania U, Grunewald W et al (2013) SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J 32:260–274

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  61. Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of nutrients: micronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Academic, New York

    Google Scholar 

  62. González-Fontes A, Rexach J, Navarro-Gochicoa MT, Herrera-Rodríguez MB, Beato VM, Maldonado JM et al (2008) Is boron involved solely in structural roles in vascular plants? Plant Signal Behav 3:24–26

    PubMed Central  PubMed  CrossRef  Google Scholar 

  63. Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant and Soil 193:121–148

    CAS  CrossRef  Google Scholar 

  64. Takano J, Miwa K, Yuan L, von Wirén N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci U S A 102:12276–12281

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  65. Noguchi K, Yasumori M, Imai T, Naito S, Matsunaga T, Oda H et al (1997) bor1-1, an Arabidopsis thaliana mutant that requires a high level of boron. Plant Physiol 115:901–906

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  66. Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K et al (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported by The Kempe Foundation (A.R.), The Knut and Alice Wallenberg Foundation (S.D.), and Vetenskapsrådet and VINNOVA (S.R., S.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Robert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rigal, A., Doyle, S.M., Robert, S. (2015). Live Cell Imaging of FM4-64, a Tool for Tracing the Endocytic Pathways in Arabidopsis Root Cells. In: Estevez, J. (eds) Plant Cell Expansion. Methods in Molecular Biology, vol 1242. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1902-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1902-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1901-7

  • Online ISBN: 978-1-4939-1902-4

  • eBook Packages: Springer Protocols