Live Imaging of Root Hairs

  • Silvia M. Velasquez
  • Jose R. DinnenyEmail author
  • José M. EstevezEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1242)


Root hairs are single cells specialized in the absorption of water and nutrients. Growing root hairs requires intensive cell wall changes to accommodate cell expansion at the apical end by a process known as tip growth. The cell wall of plants is a very rigid structure comprised largely of polysaccharides and hydroxyproline-rich O-glycoproteins. The importance of root hairs stems from their capacity to expand the surface of interaction between the root and the environment, in search for the necessary nutrients and water to allow plant growth. Therefore, it becomes crucial to deepen our knowledge of them, particularly in the light of the applicability in agriculture by allowing the expansion of croplands. Root hair growth is an extremely fast process, reaching growth rates of up to 1 μm/min and it also is a dynamic process; there can be situations in which the final length might not be affected but the growth rate is. Consequently, in this chapter we focus on a method for studying growth dynamics and rates during a time course. This method is versatile allowing for it to be used in other plant organs such as lateral root, hypocotyl, etc., and also in various conditions.

Key words

Roots hairs Tip growth Growth rate Arabidopsis 



This work was supported by PICT2011-0054 (J.M.E.), Fulbright Fellowship (S.M.V.), and Mizutani Grant (J.M.E.).


  1. 1.
    Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291.Google Scholar
  2. 2.
    Ishida T, Kurata T, Okada K, Wada T (2008) Annu Rev Plant Biol 59:365–386PubMedCrossRefGoogle Scholar
  3. 3.
    Galway M, Heckman J Jr, Schiefelbein J (1997) Planta 201:209–218PubMedCrossRefGoogle Scholar
  4. 4.
    Carol, Rachel J., et al. “A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells.” Nature 438.7070 (2005): 1013–1016.Google Scholar
  5. 5.
    Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Dev Biol 174:160–173PubMedCrossRefGoogle Scholar
  6. 6.
    Schiefelbein JW, Shipley A, Rowse P (1992) Planta 187:455–459PubMedCrossRefGoogle Scholar
  7. 7.
    Monshausen G, Bibikova T, Messerli M, Shi C, Gilroy S (2007) Proc Natl Acad Sci U S A 104:20996–21001PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Gilroy S, Jones DL (2000) Trends Plant Sci 5:56–60PubMedCrossRefGoogle Scholar
  9. 9.
    Feijó J, Sainhas J, Hackett G, Kunkel J, Hepler P (1999) J Cell Biol 144:483–496PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Vidali L, Hepler P (2001) Protoplasma 215:64–76PubMedCrossRefGoogle Scholar
  11. 11.
    Miller DD, De Ruijter NC, Bisseling T (1999) Plant J 17:141–154CrossRefGoogle Scholar
  12. 12.
    Hwang J-U, Gu Y, Lee Y-J, Yang Z (2005) Mol Biol Cell 16:5385–5399PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu H-M, Cheung AY (2002) Plant Cell 14:2175–2190PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) Annu Rev Genet 45:119–144PubMedCrossRefGoogle Scholar
  15. 15.
    Dittmer HJ (1937) Am J Bot: 417–420Google Scholar
  16. 16.
    Ticconi CA, Abel S (2004) Trends Plant Sci 9:548–555PubMedCrossRefGoogle Scholar
  17. 17.
    Desnos T (2008) Curr Opin Plant Biol 11:82–87PubMedCrossRefGoogle Scholar
  18. 18.
    Lin W-Y, Lin S-I, Chiou T-J (2009) J Exp Bot 60:1427–1438PubMedCrossRefGoogle Scholar
  19. 19.
    Rouached H, Arpat AB, Poirier Y (2010) Mol Plant 3:288–299PubMedCrossRefGoogle Scholar
  20. 20.
    Foehse D, Jungk A (1983) Plant Soil 74:359–368CrossRefGoogle Scholar
  21. 21.
    Pitts RJ, Cernac A, Estelle M (1998) Plant J 16:553–560PubMedCrossRefGoogle Scholar
  22. 22.
    Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Plant Physiol 130:1908–1917PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Reddy GV, Gordon SP, Meyerowitz EM (2007) Nat Rev Mol Cell Biol 8:491–501PubMedCrossRefGoogle Scholar
  24. 24.
    Duan L, Dietrich D, Ng CH, Chan PMY, Bhalerao R, Bennett MJ, Dinneny JR (2013) Plant Cell 25:324–341PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N (2010) Curr Protoc Mol Biol 14.20.11–14.20.17Google Scholar
  26. 26.
    Abràmoff MD, Magalhães PJ, Ram SJ (2004) Biophotonics International 11:36–42Google Scholar
  27. 27.
    Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PM, Tham C, Duan L, Dinneny JR (2013) Plant Cell 25:2132–2154PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Department of Plant BiologyCarnegie Institution for ScienceStanfordUSA
  3. 3.Laboratorio de Fisiología y Biología Molecular, IFIByNE (CONICET), FCEyNUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations