Advertisement

Structural and Mechanical Characterization of Growing Arabidopsis Plant Cell Walls

  • Friederike SaxeEmail author
  • Ingo Burgert
  • Michaela EderEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1242)

Abstract

This book chapter describes how structural and mechanical properties of living Arabidopsis hypocotyls can be measured by using small-angle X-ray scattering and micromechanical tensile tests. This approach is particularly useful to detect structural differences between selected mutants and to show how these differences are reflected in the tensile properties.

Key words

Plant cell walls Structural and mechanical properties Hypocotyls Arabidopsis - micromechanical tensile test, X-ray scattering 

References

  1. 1.
    Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T (2004) Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211PubMedCrossRefGoogle Scholar
  2. 2.
    Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78PubMedCrossRefGoogle Scholar
  3. 3.
    Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant. doi: 10.1093/mp/ssq079 PubMedGoogle Scholar
  4. 4.
    Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861PubMedCrossRefGoogle Scholar
  5. 5.
    Cosgrove D, Jarvis M (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204, doi:10.3389/fpls.2012.00204PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Keegstra K, Talmadge KW, Bauer W, Albersheim P (1973) The structure of plant cell walls III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51(1):188–197PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall, LondonGoogle Scholar
  8. 8.
    Wardrop AB (1952) The low-angle scattering of X-rays by conifer tracheids. Text Res J 22(4):288–291CrossRefGoogle Scholar
  9. 9.
    Kantola M, Kähkönen H (1963) Small-angle X-ray investigation of the orientation of crystallites in Finnish coniferous and deciduous wood fibers. Suomalainen tiedeakatemia, HelsinkiGoogle Scholar
  10. 10.
    Jakob HF, Fratzl P, Tschegg SE (1994) Size and arrangement of elementary cellulose fibrils in wood cells: a small-angle X-ray scattering study of Picea abies. J Struct Biol 113(1):13–22CrossRefGoogle Scholar
  11. 11.
    Reiterer A, Jakob HF, Stanzl-Tschegg SE, Fratzl P (1998) Spiral angle of elementary cellulose fibrils in cell walls of Picea abies determined by small-angle X-ray scattering. Wood Sci Technol 32(5):335–345CrossRefGoogle Scholar
  12. 12.
    Lichtenegger H, Reiterer A, Stanzl-Tschegg S, Fratzl P (1999) Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128(3):257–269PubMedCrossRefGoogle Scholar
  13. 13.
    Gertel ET, Green PB (1977) Cell-growth pattern and wall microfibrillar arrangement—experiments with Nitella. Plant Physiol 60(2):247–254PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Green PB (1960) Multinet growth in the cell wall of Nitella. J Biophys Biochem Cytol 7(2):289–296PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Richmond PA, Métraux JP, Taiz L (1980) Cell expansion patterns and directionality of wall mechanical properties in Nitella. Plant Physiol 65(2):211PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Davies LM, Harris PJ (2003) Atomic force microscopy of microfibrils in primary cell walls. Planta 217(2):283–289PubMedGoogle Scholar
  17. 17.
    Hepworth DG, Bruce DM (2004) Relationships between primary plant cell wall architecture and mechanical properties for onion bulb scale epidermal cells. J Texture Stud 35(6):586–602CrossRefGoogle Scholar
  18. 18.
    Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove D (2014) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21(2):853–862CrossRefGoogle Scholar
  19. 19.
    Kutschera U (1991) Determination of the longitudinal tissue stresses in the growing and non-growing regions of sunflower hypocotyls. J Plant Physiol 138(4):460–465CrossRefGoogle Scholar
  20. 20.
    Kennedy CJ, Sturcova A, Jarvis MC, Wess TJ (2007) Hydration effects on spacing of primary-wall cellulose microfibrils: a small angle X-ray scattering study. Cellulose 14:401–408CrossRefGoogle Scholar
  21. 21.
    Cosgrove DJ, Durachko DM (1994) Autolysis and extension of isolated walls from growing cucumber hypocotyls. J Exp Bot 45:1711–1719PubMedGoogle Scholar
  22. 22.
    Abasolo W, Eder M, Yamauchi K, Obel N, Reinecke A, Neumetzler L, Dunlop JWC, Mouille G, Pauly M, Hofte H, Burgert I (2009) Pectin may hinder the unfolding of xyloglucan chains during cell deformation: implications of the mechanical performance of Arabidopsis hypocotyls with pectin alterations. Mol Plant 2(5):990–999PubMedCrossRefGoogle Scholar
  23. 23.
    Ryden P, Sugimoto-Shirasu K, Smith AC, Findlay K, Reiter WD, McCann MC (2003) Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiol 132(2):1033–1040PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M, Raikhel NV, Keegstra K (2008) Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20(6):1519–1537PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20(6):629–639PubMedCrossRefGoogle Scholar
  26. 26.
    Lichtenegger H, Reiterer A, Tschegg S, Fratzl P (1998) Determination of spiral angles of elementary fibrils in the wood cell wall: comparison of small-angle X-ray scattering and wide-angle X-ray diffraction. In: Butterfield BG (Ed) Proceedings of the International Workshop on the Significance of Microfibril Angle to Wood Quality, New Zealand, pp. 140–156Google Scholar
  27. 27.
    Hammersley A (1998) FIT2D V9.129 Reference Manual V3.1. ESRF internal report, ESRF98HA01TGoogle Scholar
  28. 28.
    Perret R, Ruland W (1969) Single and multiple x-ray small-angle scattering of carbon fibres. J Appl Crystallogr 2(5):209–218CrossRefGoogle Scholar
  29. 29.
    Saxe F, Eder M, Benecke G, Aichmayer B, Fratzl P, Burgert I, Rüggeberg M (2014) Measurement of cellulose microfibril angle distributions in primary cell walls by small angle X-ray scattering. Plant Methods 10:25PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Suslov D, Verbelen JP (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57(10):2183–2192PubMedCrossRefGoogle Scholar
  31. 31.
    Burgert I, Frühmann K, Keckes J, Fratzl P, Stanzl-Tschegg SE (2003) Microtensile testing of wood fibers combined with video extensometry for efficient strain detection. Holzforschung 57(6):661–664CrossRefGoogle Scholar
  32. 32.
    Cosgrove DJ (2011) Measuring in vitro extensibility of growing plant cell walls. Methods Mol Biol 715:291–303PubMedCrossRefGoogle Scholar
  33. 33.
    Derbyshire P, Findlay K, McCann MC, Roberts K (2007) Cell elongation in Arabidopsis hypocotyls involves dynamic changes in cell wall thickness. J Exp Bot 58(8):2079–2089PubMedCrossRefGoogle Scholar
  34. 34.
    Green PB (1968) Growth physics in Nitella: a method for continuous in vivo analysis of extensibility based on a micro-manometer technique for turgor pressure. Plant Physiol 43:1169–1184PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Ruggeberg M, Saxe F, Metzger TH, Sundberg B, Fratzl P, Burgert I (2013) Enhanced cellulose orientation analysis in complex model plant tissues. J Struct Biol 183(3):419–428PubMedCrossRefGoogle Scholar
  36. 36.
    Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos Mag A 79(9):2173–2184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiomaterialsMax-Planck-Institute of Colloids and InterfacesPotsdamGermany
  2. 2.ETH Zurich, Institute for Building MaterialsStefano-Franscini-PlatzZurichSwitzerland
  3. 3.Image Knowledge Gestaltung. An Interdisciplinary LaboratoryHumboldt-Universität zu BerlinBerlinGermany
  4. 4.Empa-Swiss Federal Laboratories for Material Testing and ResearchInstitute for Building MaterialsDuebendorfSwitzerland

Personalised recommendations