Identification of Antisense RNA Stem-Loops That Inhibit RNA–Protein Interactions Using a Bacterial Reporter System

  • Kazuo HaradaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1240)


RNA–protein interactions play important roles in gene regulation, functional RNA–protein complexes such as the ribosome, and in viral replication. Molecules that regulate specific RNA–protein interactions may be used to dissect biological processes, and to establish the validity of targeting an RNA–protein interaction. There are many examples of biological regulation by antisense RNA stem-loops that form loop-loop and loop-linear RNA–RNA interactions. Here, a bacterial reporter system for the identification of RNA stem-loops that inhibit the formation of RNA–protein complexes through RNA–RNA interactions is described.

Key words

RNA–protein interactions RNA stem-loop Antisense RNA Loop-loop (“kissing”) interaction Bacterial reporter system Randomized RNA libraries LacZ β-Galactosidase Colony color assay 


  1. 1.
    Vickers TA, Wyatt JR, Freier SM (2000) Effects of RNA secondary structure on cellular antisense activity. Nucleic Acids Res 28:1340–1347PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Vickers TA et al (2003) Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 278:7108–7118PubMedCrossRefGoogle Scholar
  3. 3.
    Eguchi Y, Itoh T, Tomizawa J (1991) Antisense RNA. Annu Rev Biochem 60:631–652PubMedCrossRefGoogle Scholar
  4. 4.
    Wagner EG, Simons RW (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 48:713–742PubMedCrossRefGoogle Scholar
  5. 5.
    Brunel C, Marquet R, Romby P, Ehresmann C (2002) RNA loop-loop interactions as dynamic functional motifs. Biochimie 84:925–944PubMedCrossRefGoogle Scholar
  6. 6.
    Tinoco I Jr, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281PubMedCrossRefGoogle Scholar
  7. 7.
    Franklin NC (1993) Clustered arginine residues of bacteriophage lambda N protein are essential to antitermination of transcription, but their locale cannot compensate for boxB loop defects. J Mol Biol 231:343–360PubMedCrossRefGoogle Scholar
  8. 8.
    Harada K, Martin SS, Frankel AD (1996) Selection of RNA-binding peptides in vivo. Nature 380:175–179PubMedCrossRefGoogle Scholar
  9. 9.
    Hall KB (1994) Interaction of RNA hairpins with the human U1A N-terminal RNA binding domain. Biochemistry 33:10076–10088PubMedCrossRefGoogle Scholar
  10. 10.
    Yano A et al (2010) Identification of antisense RNA stem-loops that inhibit RNA–protein interactions using a bacterial reporter system. Nucleic Acids Res 38:3489–3501PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Harada K, Frankel AD (1999) Screening RNA-binding libraries using a bacterial transcription antitermination assay. In: Haynes SR (ed) RNA-protein interactions protocols, methods in molecular biology, vol 118. Humana, New York, pp 177–187CrossRefGoogle Scholar
  12. 12.
    Horiya S et al (2009) Replacement of the λ boxB RNA-N peptide with heterologous RNA-peptide interactions relaxes the strict spatial requirements for the formation of a transcription antitermination complex. Mol Microbiol 74:85–97PubMedCrossRefGoogle Scholar
  13. 13.
    Eguchi Y, Tomizawa J (1991) Complexes formed by complementary RNA stem-loops. Their formations, structures and interaction with ColE1 Rom protein. J Mol Biol 220:831–842PubMedCrossRefGoogle Scholar
  14. 14.
    Duconge F, Di Primo C, Toulme JJ (2000) Is a closing "GA pair" a rule for stable loop-loop RNA complexes? J Biol Chem 275:21287–21294PubMedCrossRefGoogle Scholar
  15. 15.
    Jossinet F et al (1999) Dimerization of HIV-1 genomic RNA of subtypes A and B: RNA loop structure and magnesium binding. RNA 5:1222–1234PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Dardel F et al (1998) Solution studies of the dimerization initiation site of HIV-1 genomic RNA. Nucleic Acids Res 26:3567–3571PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Mujeeb A et al (1998) Structure of the dimer initiation complex of HIV-1 genomic RNA. Nat Struct Biol 5:432–436PubMedCrossRefGoogle Scholar
  18. 18.
    Ennifar E et al (2001) Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nat Struct Biol 8:1064–1068PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Life SciencesTokyo Gakugei UniversityKoganeiJapan

Personalised recommendations