Advertisement

2DE Maps in the Discovery of Human Autoimmune Kidney Diseases: The Case of Membranous Glomerulonephritis

  • Maurizio Bruschi
  • Laura Santucci
  • Gian Marco Ghiggeri
  • Giovanni Candiano
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1243)

Abstract

The identification of antigens in the autoimmune diseases is a primary point to elucidate the pathogenesis of disease. Here, we propose an “in vivo” proteomics approach to identify the antigens of auto-antibodies in membranous glomerulonephritis. In this approach, podocyte proteins resolved by two-dimensional electrophoresis were semidry blotted to nitrocellulose membrane. Then the antibodies eluted from microdissected glomeruli and serum samples were used as a probe for the detection of podocyte antigens and characterized by means of mass spectrometry. These combined methods allowed us to identify six new antigens in membranous glomerulonephritis.

Key words

Autoimmunity Glomerulonephritis Glomerular autoantibodies Membranous nephropathy Laser capture microdissection Two-dimensional electrophoresis Semidry western blot Immunoblotting 

Notes

Acknowledgement

This study was supported by funds deriving from “Cinque per mille of IRPEF-Finanziamento della ricerca sanitaria” and from the Italian Ministry of Health “Ricerca Corrente contributo per la ricerca intramuraria.” This work was also supported by the Renal Child Foundation, and Fondazione La Nuova Speranza (“Progetto integrato per la definizione dei meccanismi implicati nella glomerulo sclerosi focale”).

References

  1. 1.
    Wasserstein AG (1997) Membranous glomerulonephritis. J Am Soc Nephrol 8:664–674PubMedGoogle Scholar
  2. 2.
    Kerjaschki D (2004) Pathomechanisms and molecular basis of membranous glomerulopathy. Lancet 364:1194–1196PubMedCrossRefGoogle Scholar
  3. 3.
    Neale TJ, Ojha PP, Exner M et al (1994) Proteinuria in passive Heymann nephritis is associated with lipid peroxidation and formation of adducts on type IV collagen. J Clin Invest 94:1577–1584PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Neale TJ, Ullrich R, Ojha P et al (1993) Reactive oxygen species and neutrophil respiratory burst cytochrome b558 are produced by kidney glomerular cells in passive Heymann nephritis. Proc Natl Acad Sci U S A 90:3645–3649PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Rastaldi MP, Candiano G, Musante L et al (2006) Glomerular clusterin is associated with PKC-alpha/beta regulation and good outcome of membranous glomerulonephritis in humans. Kidney Int 70:477–485PubMedGoogle Scholar
  6. 6.
    Kerjaschki D, Ullrich R, Diem K et al (1992) Identification of a pathogenic epitope involved in initiation of Heymann nephritis. Proc Natl Acad Sci U S A 89:11179–11183PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Allegri L (1997) Antigens in experimental models of membranous nephropathy: are they involved in human disease? Nephrol Dial Transplant 12:1801–1804PubMedCrossRefGoogle Scholar
  8. 8.
    Ronco P, Debiec H (2007) Target antigens and nephritogenic antibodies in membranous nephropathy: of rats and men. Semin Immunopathol 29:445–458PubMedCrossRefGoogle Scholar
  9. 9.
    Debiec H, Guigonis V, Mougenot B et al (2002) Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N Engl J Med 346:2053–2060PubMedCrossRefGoogle Scholar
  10. 10.
    Debiec H, Nauta J, Coulet F et al (2004) Role of truncating mutations in MME gene in fetomaternal alloimmunisation and antenatal glomerulopathies. Lancet 364:1252–1259PubMedCrossRefGoogle Scholar
  11. 11.
    Beck LH Jr, Bonegio RG, Lambeau G et al (2009) M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361:11–21PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Prunotto M, Carnevali ML, Candiano G et al (2010) Autoimmunity in membranous nephropathy targets aldose reductase and SOD2. J Am Soc Nephrol 21:507–519PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Murtas C, Bruschi M, Carnevali ML et al (2011) In vivo characterization of renal auto-antigens involved in human auto-immune diseases: the case of membranous glomerulonephritis. Proteomics Clin Appl 5:90–97PubMedCrossRefGoogle Scholar
  14. 14.
    Bruschi M, Carnevali ML, Murtas C et al (2011) Direct characterization of target podocyte antigens and auto-antibodies in human membranous glomerulonephritis: alfa-enolase and borderline antigens. J Proteomics 74:2008–2017PubMedCrossRefGoogle Scholar
  15. 15.
    Murtas C, Bruschi M, Candiano G et al (2012) Coexistence of different circulating anti-podocyte antibodies in membranous nephropathy. Clin J Am Soc Nephrol 7:1394–1400PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Saleem MA, O’Hare MJ, Reiser J et al (2002) A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 13:630–638PubMedGoogle Scholar
  17. 17.
    Bruschi M, Musante L, Candiano G et al (2003) Soft immobilized pH gradient gels in proteome analysis: a follow-up. Proteomics 3:821–825PubMedCrossRefGoogle Scholar
  18. 18.
    Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85PubMedCrossRefGoogle Scholar
  20. 20.
    Candiano G, Bruschi M, Musante L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333PubMedCrossRefGoogle Scholar
  21. 21.
    Candiano G, Musante L, Bruschi M et al (2002) Two-dimensional maps in soft immobilized pH gradient gels: a new approach to the proteome of the Third Millennium. Electrophoresis 23:292–297PubMedCrossRefGoogle Scholar
  22. 22.
    Margolis J, Kenrick KC (1967) Polyacrylamide gel-electrophoresis across a molecular sieve gradient. Nature 214:1334–1336PubMedCrossRefGoogle Scholar
  23. 23.
    Wise GE, Lin F (1991) Transfer of silver-stained proteins from polyacrylamide gels to polyvinylidene difluoride membranes. J Biochem Biophys Methods 22:223–231PubMedCrossRefGoogle Scholar
  24. 24.
    Ranganathan V, De PK (1996) Western blot of proteins from Coomassie-stained polyacrylamide gels. Anal Biochem 234:102–104PubMedCrossRefGoogle Scholar
  25. 25.
    Salinovich O, Montelaro RC (1986) Reversible staining and peptide mapping of proteins transferred to nitrocellulose after separation by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Anal Biochem 156:341–347PubMedCrossRefGoogle Scholar
  26. 26.
    Patton WF, Lam L, Su Q et al (1994) Metal chelates as reversible stains for detection of electroblotted proteins: application to protein microsequencing and immunoblotting. Anal Biochem 220:324–335PubMedCrossRefGoogle Scholar
  27. 27.
    Root DD, Reisler E (1989) Copper iodide staining of protein blots on nitrocellulose membranes. Anal Biochem 181:250–253PubMedCrossRefGoogle Scholar
  28. 28.
    Harper S, Speicher DW (2001) Detection of proteins on blot membranes. Curr Protoc Protein Sci Chapter 10, Unit 10 18Google Scholar
  29. 29.
    Krajewski S, Zapata JM, Reed JC (1996) Detection of multiple antigens on western blots. Anal Biochem 236:221–228PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Maurizio Bruschi
    • 1
  • Laura Santucci
    • 1
  • Gian Marco Ghiggeri
    • 2
  • Giovanni Candiano
    • 1
  1. 1.Laboratory on Pathophysiology of UremiaIstituto Giannina GasliniGenoaItaly
  2. 2.Division of Nephrology, Dialysis, and TransplantationIstituto Giannina GasliniGenoaItaly

Personalised recommendations