Advertisement

Integrating Proteomics Profiling Data Sets: A Network Perspective

  • Akshay Bhat
  • Mohammed Dakna
  • Harald Mischak
Part of the Methods in Molecular Biology book series (MIMB, volume 1243)

Abstract

Understanding disease mechanisms often requires complex and accurate integration of cellular pathways and molecular networks. Systems biology offers the possibility to provide a comprehensive map of the cell’s intricate wiring network, which can ultimately lead to decipher the disease phenotype. Here, we describe what biological pathways are, how they function in normal and abnormal cellular systems, limitations faced by databases for integrating data, and highlight how network models are emerging as a powerful integrative framework to understand and interpret the roles of proteins and peptides in diseases.

Key words

Systems biology Network biology Protein–Protein interactions Proteomics databases Gene ontology Biological pathways databases 

Notes

Acknowledgments

This work was supported in part by the Marie Curie Actions—BCMolMed (FP7-PEOPLE-2012-ITN-EID).

References

  1. 1.
    Schadt EE (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461:218–223PubMedCrossRefGoogle Scholar
  2. 2.
    Krishnamurthy L, Nadeau J, Ozsoyoglu G et al (2003) Pathways database system: an integrated system for biological pathways. Bioinformatics 19:930–937PubMedCrossRefGoogle Scholar
  3. 3.
    Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31:2–8PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Cho DY, Kim YA, Przytycka TM (2012) Chapter 5: network biology approach to complex diseases. PLoS Comput Biol 8:e1002820PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Zhang F, Drabier R (2012) IPAD: the integrated pathway analysis database for systematic enrichment analysis. BMC Bioinformatics 13(Suppl 15):S7CrossRefGoogle Scholar
  6. 6.
    Huang H, Wu X, Sonachalam M et al (2012) PAGED: a pathway and gene-set enrichment database to enable molecular phenotype discoveries. BMC Bioinformatics 13(Suppl 15):S2CrossRefGoogle Scholar
  7. 7.
    Losko S, Heumann K (2009) Semantic data integration and knowledge management to represent biological network associations. In: Nikolsky Y, Bryant J (eds) Protein networks and pathway analysis. Humana. Methods Mol Biol. 563: 241–258Google Scholar
  8. 8.
    Guo X, Shriver CD, Hu H et al (2005) Analysis of metabolic and regulatory pathways through gene ontology-derived semantic similarity measures. AMIA Annu Symp Proc 2005:972PubMedCentralGoogle Scholar
  9. 9.
    Sahoo SS, Bodenreider O, Rutter JL et al (2008) An ontology-driven semantic mashup of gene and biological pathway information: application to the domain of nicotine dependence. J Biomed Inform 41:752–765PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Wixon J, Kell D (2000) The Kyoto encyclopedia of genes and genomes: KEGG. Yeast 17:48–55PubMedCrossRefGoogle Scholar
  11. 11.
    Kanehisa M, Goto S, Kawashima S et al (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Croft D, O’Kelly G, Wu G et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39:D691–D697PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Van Iersel MP, Kelder T, Pico AR et al (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:399PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449PubMedCrossRefGoogle Scholar
  16. 16.
    Eden E, Navon R, Steinfeld I et al (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Berriz GF, King OD, Bryant B et al (2003) Characterizing gene sets with FuncAssociate. Bioinformatics 19:2502–2504PubMedCrossRefGoogle Scholar
  18. 18.
    Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Bauer-Mehren A, Rautschka M, Sanz F et al (2010) DisGeNET: a Cytoscape plugin to visualize, integrate, search and analyze gene-disease networks. Bioinformatics 26:2924–2926PubMedCrossRefGoogle Scholar
  20. 20.
    Merico D, Isserlin R, Stueker O et al (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5:e13984PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Yang L, Walker JR, Hogenesch JB et al (2008) NetAtlas: a Cytoscape plugin to examine signaling networks based on tissue gene expression. In Silico Biol 8:47–52PubMedGoogle Scholar
  22. 22.
    Doncheva NT, Assenov Y, Domingues FS et al (2012) Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 7:670–685PubMedCrossRefGoogle Scholar
  23. 23.
    Razick S, Mora A, Michalickova K et al (2011) iRefScape. A Cytoscape plug-in for visualization and data mining of protein interaction data from iRefIndex. BMC Bioinformatics 12:388PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Gao J, Ade AS, Tarcea VG et al (2009) Integrating and annotating the interactome using the MiMI plugin for cytoscape. Bioinformatics 25:137–138PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Srivas R, Hannum G, Ruscheinski J et al (2011) Assembling global maps of cellular function through integrative analysis of physical and genetic networks. Nat Protoc 6:1308–1323PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Avila-Campillo I, Drew K, Lin J et al (2007) BioNetBuilder: automatic integration of biological networks. Bioinformatics 23:392–393PubMedCrossRefGoogle Scholar
  27. 27.
    Martin A, Ochagavia ME, Rabasa LC et al (2010) BisoGenet: a new tool for gene network building, visualization and analysis. BMC Bioinformatics 11:91PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Prifti E, Zucker J-D, Clement K et al (2008) FunNet: an integrative tool for exploring transcriptional interactions. Bioinformatics 24:2636–2638PubMedCrossRefGoogle Scholar
  29. 29.
    Creek DJ, Jankevics A, Burgess KE et al (2012) IDEOM: an Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics 28:1048–1049PubMedCrossRefGoogle Scholar
  30. 30.
    Clasquin MF, Melamud E, Rabinowitz JD (2012) LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. Curr Protoc Bioinformatics 37:14.11.1–14.11.23Google Scholar
  31. 31.
    Scheltema RA, Jankevics A, Jansen RC et al (2011) PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal Chem 83:2786–2793PubMedCrossRefGoogle Scholar
  32. 32.
    Chokkathukalam A, Jankevics A, Creek DJ et al (2013) mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics 29:281–283PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic interactome: it’s about time. Brief Bioinform 11:15–29PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Vidal M (2009) A unifying view of 21st century systems biology. FEBS Lett 583:3891–3894PubMedCrossRefGoogle Scholar
  35. 35.
    Cusick ME, Klitgord N, Vidal M et al (2005) Interactome: gateway into systems biology. Hum Mol Genet 14:R171–R181PubMedCrossRefGoogle Scholar
  36. 36.
    De Las Rivas J, Fontanillo C (2010) Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6:e1000807PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Ideker T, Ozier O, Schwikowski B et al (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(1):S233–S240PubMedCrossRefGoogle Scholar
  38. 38.
    Go GO (2011) The gene ontology. Genome 2009:1–13Google Scholar
  39. 39.
    Dominiczak AF, Herget-Rosenthal S, Delles C et al (2010) Systems biology to battle vascular disease. Nephrol Dial Transplant 25:1019–1022PubMedCrossRefGoogle Scholar
  40. 40.
    Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Müller F-J, Laurent LC, Kostka D et al (2008) Regulatory networks define phenotypic classes of human stem cell lines. Nature 455:401–405PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Chowdhury SA, Koyutürk M (2010) Identification of coordinately dysregulated subnetworks in complex phenotypes. Pac Symp Biocomput. 133–144Google Scholar
  43. 43.
    Chowdhury SA, Nibbe RK, Chance MR et al (2011) Subnetwork state functions define dysregulated subnetworks in cancer. J Comput Biol 18:263–281PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Dao P, Colak R, Salari R et al (2010) Inferring cancer subnetwork markers using density-constrained biclustering. Bioinformatics 26:i625–i631PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Dao P, Wang K, Collins C et al (2011) Optimally discriminative subnetwork markers predict response to chemotherapy. Bioinformatics 27:i205–i213PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Lee E, Chuang H-Y, Kim J-W et al (2008) Inferring pathway activity toward precise disease classification. PLoS Comput Biol 4:e1000217PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Fechete R, Heinzel A, Perco P et al (2011) Mapping of molecular pathways, biomarkers and drug targets for diabetic nephropathy. Proteomics Clin Appl 5:354–366PubMedCrossRefGoogle Scholar
  48. 48.
    Vidal M, Cusick ME, Barabási A-L (2011) Interactome networks and human disease. Cell 144:986–998PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Suthram S, Dudley JT, Chiang AP et al (2010) Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol 6:e1000662PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Chu L-H, Chen B-S (2008) Construction of a cancer-perturbed protein–protein interaction network for discovery of apoptosis drug targets. BMC Syst Biol 2:56PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Magrane M, Consortium U (2011) UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) 2011:bar009CrossRefGoogle Scholar
  52. 52.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  53. 53.
    Smedley D, Haider S, Ballester B et al (2009) BioMart: biological queries made easy. BMC Genomics 10:22PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–24504PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Stark C, Breitkreutz B-J, Chatr-Aryamontri A et al (2011) The BioGRID Interaction Database: 2011 update. Nucleic Acids Res 39:D698–D704PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Isserlin R, El-Badrawi RA, Bader GD (2011) The biomolecular interaction network database in PSI-MI 2.5. Database (Oxford) 2011:baq037CrossRefGoogle Scholar
  58. 58.
    Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Pruitt KD, Tatusova T, Brown GR et al (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135. doi: 10.1093/nar/gkr1079 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Xenarios I, Salwínski L, Duan XJ et al (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30:303–305PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi: 10.1038/75556 PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Huang DW, Sherman BT, Tan Q et al (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Mosaiques-Diagnostics GmbHHannoverGermany
  2. 2.Mosaiques diagnostics & therapeuticsHannoverGermany

Personalised recommendations