Skip to main content

Quantification of Proteins in Urine Samples Using Targeted Mass Spectrometry Methods

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1243))

Abstract

Numerous clinical proteomics studies are focused on the development of biomarkers to improve either diagnostics for early disease detection or the monitoring of the response to the treatment. Although, a wealth of biomarker candidates are available, their evaluation and validation in a true clinical setup remains challenging. In biomarkers evaluation studies, a panel of proteins of interest are systematically analyzed in a large cohort of samples. However, in spite of the latest progresses in mass spectrometry, the consistent detection of pertinent proteins in high complex biological samples is still a challenging task. Thus, targeted LC-MS/MS methods are better suited for the systematic analysis of biomarkers rather than shotgun approaches. This chapter describes the workflow used to perform targeted quantitative analyses of proteins in urinary samples. The peptides, as surrogates of the protein of interest, are commonly measured using a triple quadrupole mass spectrometers operated in selected reaction monitoring (SRM) mode. More recently, the advances in targeted LC-MS/MS analysis based on parallel reaction monitoring (PRM) performed on a quadrupole-orbitrap instrument have allowed to increase the specificity and selectivity of the measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Decramer S, Gonzalez de Peredo A, Breuil B et al (2008) Urine in clinical proteomics. Mol Cell Proteomics 7:1850–1862

    Article  CAS  PubMed  Google Scholar 

  2. Picotti P, Bodenmiller B, Mueller LN et al (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kiyonami R, Domon B (2010) Selected reaction monitoring applied to quantitative proteomics. In: Cutillas P, Timms J (eds) Methods Mol Biol. LC-MS/MS in proteomics. Springer, Hatfield

    Google Scholar 

  4. EuroKUP Standard Protocol for Urine Collection. www.eurokup.org/node/127

  5. Mischak H, Kolch W, Aivaliotis M et al (2010) Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics Clin Appl 4:464–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Court M, Selevsek N, Matondo M et al (2011) Toward a standardized urine proteome analysis methodology. Proteomics 11:1160–1171

    Article  CAS  PubMed  Google Scholar 

  7. Chen YT, Chen HW, Domanski D et al (2012) Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers. J Proteomics 75:3529–3545

    Article  CAS  PubMed  Google Scholar 

  8. Selevsek N, Matondo M, Sanchez Carbayo M et al (2011) Systematic quantification of peptides/proteins in urine using selected reaction monitoring. Proteomics 11:1135–1147

    Article  CAS  PubMed  Google Scholar 

  9. Peterson AC, Russell JD, Bailey DJ et al (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11:1475–1488

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gallien S, Duriez E, Crone C et al (2012) Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 11:1709–1723

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gallien S, Peterman S, Kiyonami R et al (2012) Highly multiplexed targeted proteomics using precise control of peptide retention time. Proteomics 12:1122–1133

    Article  CAS  PubMed  Google Scholar 

  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  13. Deutsch EW, Lam H, Aebersold R (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 9:429–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Craig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3:1234–1242

    Article  CAS  PubMed  Google Scholar 

  15. Picotti P, Lam H, Campbell D et al (2008) A database of mass spectrometric assays for the yeast proteome. Nat Methods 5:913–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Stahl-Zeng J, Lange V, Ossola R et al (2007) High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics 6:1809–1817

    Article  CAS  PubMed  Google Scholar 

  17. Prakash A, Kiyonami R, Schoen A, et al. (2009) Integrated workflow to design methods and analyze data in large-to-extremely-large scale SRM experiments. Paper presented at the the 57th American Society for Mass Spectrometry conference, Philadelphia, Pennsylvania, May 31–June 4 2009

    Google Scholar 

  18. Gallien S, Duriez E, Domon B (2011) Selected reaction monitoring applied to proteomics. J Mass Spectrom 46:298–312

    Article  CAS  PubMed  Google Scholar 

  19. Lange V, Picotti P, Domon B et al (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kiyonami R, Schoen A, Prakash A et al (2011) Increased selectivity, analytical precision, and throughput in targeted proteomics. Mol Cell Proteomics 10(M110):002931

    PubMed  Google Scholar 

  21. US Department of Health and Human Services F, Center for Drug Evaluation and Research (2001) Guidance for industry: bioanalytical method validation. US Department of Health and Human Services F, Center for Drug Evaluation and Research, Rockville, MD

    Google Scholar 

Download references

Acknowledgements

Nina Khristenko thanks Luxembourg FNR (AFR grant 1364383). Bruno Domon acknowledges Luxembourg FNR (PEARL grant). We are grateful to Elodie Duriez, Sebastien Gallien, Cérdic Mesmin, Cristina Maximo, and Stéphane Trevisiol for helpful discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Domon Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Khristenko, N., Domon, B. (2015). Quantification of Proteins in Urine Samples Using Targeted Mass Spectrometry Methods. In: Vlahou, A., Makridakis, M. (eds) Clinical Proteomics. Methods in Molecular Biology, vol 1243. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1872-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1872-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1871-3

  • Online ISBN: 978-1-4939-1872-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics