Skip to main content

Epigenetics of Gastric Cancer

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Epigenetic changes frequently occur in human gastric cancer. Gene promoter region hypermethylation, genomic global hypomethylation, histone modifications, and alterations of noncoding RNAs are major epigenetic changes in gastric cancer. As a key risk factor of gastric cancer, H. pylori infection is an independent predictive indicator of gene methylation. A growing number of epigenetic studies in gastric cancer have provided lots of potential diagnostic and prognostic markers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-aza-CR:

5-azacytidine

5-aza-CdR:

5-aza-2′-deoxycytidine

GC:

Gastric cancer

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

HDMs:

Histone demethylases

HMTs:

Histone methyltransferases

LncRNA:

Long noncoding RNA

TSA:

Trichostatin A

References

  1. Jemal A, Bray F, Center MM (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    PubMed  Google Scholar 

  2. Hartgrink HH, Jansen EP, van Grieken NC et al (2009) Gastric cancer. Lancet 374:477–490

    PubMed  Google Scholar 

  3. Ni C, Zhang Z, Zhu X et al (2013) Prognostic value of CD166 expression in cancers of the digestive system: a systematic review and meta-analysis. PLoS One 8:e70958

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64:31–49

    CAS  PubMed  Google Scholar 

  5. Correa P, Haenszel W, Cuello C et al (1975) A model for gastric cancer epidemiology. Lancet 2:58–60

    CAS  PubMed  Google Scholar 

  6. Humar B, Guilford P (2009) Hereditary diffuse gastric cancer: a manifestation of lost cell polarity. Cancer Sci 100:1151–1157

    CAS  PubMed  Google Scholar 

  7. Carneiro F, Huntsman DG, Smyrk TC et al (2004) Model of the early development of diffuse gastric cancer in E-cadherin mutation carriers and its implications for patient screening. J Pathol 203:681–687

    CAS  PubMed  Google Scholar 

  8. Tahara E (2004) Genetic pathways of two types of gastric cancer. IARC Sci Publ 157:327–349

    PubMed  Google Scholar 

  9. Waddington CH (1939) Preliminary notes on the development of the wings in normal and mutant strains of Drosophila. Proc Natl Acad Sci U S A 25:299–307

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Sadikovic B, Al-Romaih K, Squire JA et al (2008) Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics 9:394–408

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Calcagno DQ, Gigek CO, Chen ES et al (2013) DNA and histone methylation in gastric carcinogenesis. World J Gastroenterol 19:1182–1192

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Qu Y, Dang S, Hou P (2013) Gene methylation in gastric cancer. Clin Chim Acta 424:53–65

    CAS  PubMed  Google Scholar 

  13. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    CAS  PubMed  Google Scholar 

  14. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    CAS  PubMed  Google Scholar 

  15. Jia Y, Guo M (2013) Epigenetic changes in colorectal cancer. Chin J Cancer 32:21–30

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    CAS  PubMed  Google Scholar 

  17. Kim H, Park J, Jung Y et al (2010) DNA methyltransferase 3-like affects promoter methylation of thymine DNA glycosylase independently of DNMT1 and DNMT3B in cancer cells. Int J Oncol 36:1563–1572

    CAS  PubMed  Google Scholar 

  18. Yang J, Wei X, Wu Q et al (2011) Clinical significance of the expression of DNA methyltransferase proteins in gastric cancer. Mol Med Rep 4:1139–1143

    CAS  PubMed  Google Scholar 

  19. Ding WJ, Fang JY, Chen XY et al (2008) The expression and clinical significance of DNA methyltransferase proteins in human gastric cancer. Dig Dis Sci 53:2083–2089

    CAS  PubMed  Google Scholar 

  20. Chen ZX, Mann JR, Hsieh CL et al (2005) Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem 95:902–917

    CAS  PubMed  Google Scholar 

  21. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    CAS  PubMed  Google Scholar 

  22. Greger V, Passarge E, Hopping W et al (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83:155–158

    CAS  PubMed  Google Scholar 

  23. Sakai T, Toguchida J, Ohtani N et al (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48:880–888

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Herman JG, Latif F, Weng Y et al (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91:9700–9704

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Merlo A, Herman JG, Mao L et al (1995) 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686–692

    CAS  PubMed  Google Scholar 

  26. Herman JG, Merlo A, Mao L et al (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530

    CAS  PubMed  Google Scholar 

  27. Esteller M (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21:5427–5440

    CAS  PubMed  Google Scholar 

  28. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Sato F, Meltzer SJ (2006) CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer 106:483–493

    CAS  PubMed  Google Scholar 

  30. Tamura G (2006) Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer. World J Gastroenterol 12:192–198

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Hu XT, He C (2013) Recent progress in the study of methylated tumor suppressor genes in gastric cancer. Chin J Cancer 32:31–41

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Yang N, Zhang L, Zhang Y et al (2003) An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res 31:4929–4940

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Voon DC, Wang H, Koo JK et al (2012) Runx3 protects gastric epithelial cells against epithelial-mesenchymal transition-induced cellular plasticity and tumorigenicity. Stem Cells 30:2088–2099

    CAS  PubMed  Google Scholar 

  34. Yamamura Y, Lee WL, Inoue K et al (2006) RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem 281:5267–5276

    CAS  PubMed  Google Scholar 

  35. Chen W, Gao N, Shen Y et al (2010) Hypermethylation downregulates Runx3 gene expression and its restoration suppresses gastric epithelial cell growth by inducing p27 and caspase3 in human gastric cancer. J Gastroenterol Hepatol 25:823–831

    CAS  PubMed  Google Scholar 

  36. Wang L, Chen S, Xue M et al (2012) Homeobox D10 gene, a candidate tumor suppressor, is downregulated through promoter hypermethylation and associated with gastric carcinogenesis. Mol Med 18:389–400

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Yao D, Shi J, Shi B et al (2012) Quantitative assessment of gene methylation and their impact on clinical outcome in gastric cancer. Clin Chim Acta 413:787–794

    CAS  PubMed  Google Scholar 

  38. Sugita H, Iida S, Inokuchi M et al (2011) Methylation of BNIP3 and DAPK indicates lower response to chemotherapy and poor prognosis in gastric cancer. Oncol Rep 25:513–518

    CAS  PubMed  Google Scholar 

  39. Chen G, Cizeau J, Vande Velde C et al (1999) Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem 274:7–10

    CAS  PubMed  Google Scholar 

  40. Kubasiak LA, Hernandez OM, Bishopric NH et al (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A 99:12825–12830

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Murai M, Toyota M, Suzuki H et al (2005) Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin Cancer Res 11:1021–1027

    CAS  PubMed  Google Scholar 

  42. Christofori G, Semb H (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24:73–76

    CAS  PubMed  Google Scholar 

  43. Tamura G, Yin J, Wang S et al (2000) E-cadherin gene promoter hypermethylation in primary human gastric carcinomas. J Natl Cancer Inst 92:569–573

    CAS  PubMed  Google Scholar 

  44. Yu QM, Wang XB, Luo J et al (2012) CDH1 methylation in preoperative peritoneal washes is an independent prognostic factor for gastric cancer. J Surg Oncol 106:765–771

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Satoh A, Toyota M, Itoh F et al (2003) Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res 63:8606–8613

    CAS  PubMed  Google Scholar 

  46. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  47. Howard G, Eiges R, Gaudet F et al (2008) Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27:404–408

    CAS  PubMed  Google Scholar 

  48. Chen RZ, Pettersson U, Beard C et al (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93

    CAS  PubMed  Google Scholar 

  49. Eden A, Gaudet F, Waghmare A et al (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    CAS  PubMed  Google Scholar 

  50. Shen L, Kondo Y, Guo Y et al (2007) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 3:2023–2036

    CAS  PubMed  Google Scholar 

  51. Hur K, Han TS, Jung EJ et al (2012) Up-regulated expression of sulfatases (SULF1 and SULF2) as prognostic and metastasis predictive markers in human gastric cancer. J Pathol 228:88–98

    CAS  PubMed  Google Scholar 

  52. Shen J, Wei J, Wang H et al (2013) SULF2 methylation is associated with in vitro cisplatin sensitivity and clinical efficacy for gastric cancer patients treated with a modified FOLFOX regimen. PLoS One 8:e75564

    CAS  PubMed Central  PubMed  Google Scholar 

  53. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1994) Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7–14 June 1994. IARC Monogr Eval Carcinog Risks Hum 61:1–241

    Google Scholar 

  54. Correa P (1991) Is gastric carcinoma an infectious disease? N Engl J Med 325:1170–1171

    CAS  PubMed  Google Scholar 

  55. Eslick GD, Lim LL, Byles JE et al (1999) Association of Helicobacter pylori infection with gastric carcinoma: a meta-analysis. Am J Gastroenterol 94:2373–2379

    CAS  PubMed  Google Scholar 

  56. Uemura N, Okamoto S, Yamamoto S et al (2001) Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345:784–789

    CAS  PubMed  Google Scholar 

  57. Ding SZ, Goldberg JB, Hatakeyama M (2010) Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol 6:851–862

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Katayama Y, Takahashi M, Kuwayama H (2009) Helicobacter pylori causes runx3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem Biophys Res Commun 388:496–500

    CAS  PubMed  Google Scholar 

  59. Chan AO, Lam SK, Wong BC et al (2003) Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut 52:502–506

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Ushijima T, Hattori N (2012) Molecular pathways: involvement of Helicobacter pylori-triggered inflammation in the formation of an epigenetic field defect, and its usefulness as cancer risk and exposure markers. Clin Cancer Res 18:923–929

    CAS  PubMed  Google Scholar 

  61. Shin CM, Kim N, Jung Y et al (2011) Genome-wide DNA methylation profiles in noncancerous gastric mucosae with regard to Helicobacter pylori infection and the presence of gastric cancer. Helicobacter 16:179–188

    CAS  PubMed  Google Scholar 

  62. Cheng AS, Li MS, Kang W et al (2013) Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology 144:122–133e129

    CAS  PubMed  Google Scholar 

  63. Ando T, Yoshida T, Enomoto S et al (2009) DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 124:2367–2374

    CAS  PubMed  Google Scholar 

  64. Suzuki H, Yamamoto E, Nojima M et al (2010) Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis 31:2066–2073

    CAS  PubMed  Google Scholar 

  65. Miyazaki T, Murayama Y, Shinomura Y et al (2007) E-cadherin gene promoter hypermethylation in H. pylori-induced enlarged fold gastritis. Helicobacter 12:523–531

    CAS  PubMed  Google Scholar 

  66. Nakajima T, Enomoto S, Yamashita S et al (2010) Persistence of a component of DNA methylation in gastric mucosae after Helicobacter pylori eradication. J Gastroenterol 45:37–44

    CAS  PubMed  Google Scholar 

  67. Gigek CO, Chen ES, Calcagno DQ et al (2012) Epigenetic mechanisms in gastric cancer. Epigenomics 4:279–294

    CAS  PubMed  Google Scholar 

  68. Kurdistani SK (2007) Histone modifications as markers of cancer prognosis: a cellular view. Br J Cancer 97:1–5

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    CAS  PubMed  Google Scholar 

  70. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    CAS  PubMed  Google Scholar 

  71. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269

    CAS  PubMed  Google Scholar 

  72. Lan F, Shi Y (2009) Epigenetic regulation: methylation of histone and non-histone proteins. Sci China C Life Sci 52:311–322

    CAS  PubMed  Google Scholar 

  73. Park YS, Jin MY, Kim YJ et al (2008) The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 15:1968–1976

    PubMed  Google Scholar 

  74. Varambally S, Cao Q, Mani RS et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Fujii S, Ochiai A (2008) Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Sci 99:738–746

    CAS  PubMed  Google Scholar 

  76. Coombes MM, Briggs KL, Bone JR et al (2003) Resetting the histone code at CDKN2A in HNSCC by inhibition of DNA methylation. Oncogene 22:8902–8911

    CAS  PubMed  Google Scholar 

  77. Meng CF, Zhu XJ, Peng G et al (2010) Role of histone modifications and DNA methylation in the regulation of O6-methylguanine-DNA methyltransferase gene expression in human stomach cancer cells. Cancer Invest 28:331–339

    CAS  PubMed  Google Scholar 

  78. Zhu WG, Dai Z, Ding H et al (2001) Increased expression of unmethylated CDKN2D by 5-aza-2'-deoxycytidine in human lung cancer cells. Oncogene 20:7787–7796

    CAS  PubMed  Google Scholar 

  79. Liu J, Zhu X, Xu X et al (2014) DNA promoter and histone H3 methylation downregulate NGX6 in gastric cancer cells. Med Oncol 31:817

    CAS  PubMed  Google Scholar 

  80. Yasui W, Oue N, Ono S et al (2003) Histone acetylation and gastrointestinal carcinogenesis. Ann N Y Acad Sci 983:220–231

    CAS  PubMed  Google Scholar 

  81. Liu C, Xu D (2004) Inhibition of histone deacetylases. Methods Mol Biol 287:87–97

    CAS  PubMed  Google Scholar 

  82. Wang GG, Allis CD, Chi P (2007) Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med 13:363–372

    CAS  PubMed  Google Scholar 

  83. Glozak MA, Sengupta N, Zhang X et al (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    CAS  PubMed  Google Scholar 

  84. Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8:1409–1420

    CAS  PubMed  Google Scholar 

  85. Horwitz GA, Zhang K, McBrian MA et al (2008) Adenovirus small e1a alters global patterns of histone modification. Science 321:1084–1085

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Ferrari R, Pellegrini M, Horwitz GA et al (2008) Epigenetic reprogramming by adenovirus e1a. Science 321:1086–1088

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    CAS  PubMed  Google Scholar 

  88. Sudo T, Mimori K, Nishida N et al (2011) Histone deacetylase 1 expression in gastric cancer. Oncol Rep 26:777–782

    CAS  PubMed  Google Scholar 

  89. Song J, Noh JH, Lee JH et al (2005) Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 113:264–268

    CAS  PubMed  Google Scholar 

  90. Mutze K, Langer R, Becker K et al (2010) Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer. Ann Surg Oncol 17:3336–3343

    PubMed  Google Scholar 

  91. Kim JK, Noh JH, Eun JW et al (2013) Targeted inactivation of HDAC2 restores p16INK4a activity and exerts antitumor effects on human gastric cancer. Mol Cancer Res 11:62–73

    CAS  PubMed  Google Scholar 

  92. Yamamura N, Kishimoto T (2012) Epigenetic regulation of GATA4 expression by histone modification in AFP-producing gastric adenocarcinoma. Exp Mol Pathol 93:35–39

    CAS  PubMed  Google Scholar 

  93. Mitani Y, Oue N, Hamai Y et al (2005) Histone H3 acetylation is associated with reduced p21(WAF1/CIP1) expression by gastric carcinoma. J Pathol 205:65–73

    CAS  PubMed  Google Scholar 

  94. Lee JH, Song MY, Song EK et al (2009) Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes 58:344–351

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Sun WJ, Zhou X, Zheng JH et al (2012) Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 44:80–91

    CAS  Google Scholar 

  96. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Oki M, Aihara H, Ito T (2007) Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Subcell Biochem 41:319–336

    PubMed  Google Scholar 

  98. Takahashi H, Murai Y, Tsuneyama K et al (2006) Overexpression of phosphorylated histone H3 is an indicator of poor prognosis in gastric adenocarcinoma patients. Appl Immunohistochem Mol Morphol 14:296–302

    CAS  PubMed  Google Scholar 

  99. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    CAS  PubMed  Google Scholar 

  100. Wang H, Wang L, Erdjument-Bromage H et al (2004) Role of histone H2A ubiquitination in polycomb silencing. Nature 431:873–878

    CAS  PubMed  Google Scholar 

  101. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  102. Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4:690–699

    CAS  PubMed  Google Scholar 

  103. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    CAS  PubMed  Google Scholar 

  104. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    CAS  PubMed  Google Scholar 

  105. Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47:1127–1137

    CAS  PubMed  Google Scholar 

  106. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Ferracin M, Pedriali M, Veronese A et al (2011) MicroRNA profiling for the identification of cancers with unknown primary tissue-of-origin. J Pathol 225:43–53

    CAS  PubMed  Google Scholar 

  110. Tsujiura M, Ichikawa D, Komatsu S et al (2010) Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer 102:1174–1179

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Liu H, Zhu L, Liu B et al (2012) Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett 316:196–203

    CAS  PubMed  Google Scholar 

  112. Liu R, Zhang C, Hu Z et al (2011) A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 47:784–791

    CAS  PubMed  Google Scholar 

  113. Consortium EP, Birney E, Stamatoyannopoulos JA et al (2007) Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447:799–816

    Google Scholar 

  114. Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145:178–181

    CAS  PubMed  Google Scholar 

  116. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    CAS  PubMed  Google Scholar 

  117. Louro R, Smirnova AS, Verjovski-Almeida S (2009) Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics 93:291–298

    CAS  PubMed  Google Scholar 

  118. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Sana J, Faltejskova P, Svoboda M et al (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Mattick JS, Amaral PP, Dinger ME et al (2009) RNA regulation of epigenetic processes. Bioessays 31:51–59

    CAS  PubMed  Google Scholar 

  121. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Sun M, Xia R, Jin F et al (2013) Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol 35(2):1065–1073

    PubMed  Google Scholar 

  123. Endo H, Shiroki T, Nakagawa T et al (2013) Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. PLoS One 8:e77070

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Zhao Y, Guo Q, Chen J et al (2014) Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep 31:358–364

    CAS  PubMed  Google Scholar 

  125. Yu J, Tao Q, Cheung KF et al (2008) Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology 48:508–518

    CAS  PubMed  Google Scholar 

  126. Du W, Wang S, Zhou Q et al (2013) ADAMTS9 is a functional tumor suppressor through inhibiting AKT/mTOR pathway and associated with poor survival in gastric cancer. Oncogene 32:3319–3328

    CAS  PubMed  Google Scholar 

  127. Alvarez MC, Santos JC, Maniezzo N et al (2013) MGMT and MLH1 methylation in Helicobacter pylori-infected children and adults. World J Gastroenterol 19:3043–3051

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Akiyama Y, Watkins N, Suzuki H et al (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23:8429–8439

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Wen XZ, Akiyama Y, Pan KF et al (2010) Methylation of GATA-4 and GATA-5 and development of sporadic gastric carcinomas. World J Gastroenterol 16:1201–1208

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Yu J, Cheng YY, Tao Q et al (2009) Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 136:640–651 e641

    CAS  PubMed  Google Scholar 

  131. Xu L, Li X, Chu ES et al (2012) Epigenetic inactivation of BCL6B, a novel functional tumour suppressor for gastric cancer, is associated with poor survival. Gut 61:977–985

    CAS  PubMed  Google Scholar 

  132. Agathanggelou A, Cooper WN, Latif F (2005) Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 65:3497–3508

    CAS  PubMed  Google Scholar 

  133. Shi DT, Han M, Gao N et al (2013) Association of RASSF1A promoter methylation with gastric cancer risk: a meta-analysis. Tumour Biol 35(2):943–948

    PubMed  Google Scholar 

  134. Kim SJ, Hwang JA, Ro JY et al (2013) Galectin-7 is epigenetically-regulated tumor suppressor in gastric cancer. Oncotarget 4:1461–1471

    PubMed Central  PubMed  Google Scholar 

  135. Ivanova T, Zouridis H, Wu Y et al (2013) Integrated epigenomics identifies BMP4 as a modulator of cisplatin sensitivity in gastric cancer. Gut 62:22–33

    CAS  PubMed  Google Scholar 

  136. Miao R, Guo X, Zhi Q et al (2013) VEZT, a novel putative tumor suppressor, suppresses the growth and tumorigenicity of gastric cancer. PLoS One 8:e74409

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Hashiguchi Y, Nishida N, Mimori K et al (2012) Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int J Oncol 40:1477–1482

    CAS  PubMed  Google Scholar 

  138. Wang HJ, Ruan HJ, He XJ et al (2010) MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer 46:2295–2303

    CAS  PubMed  Google Scholar 

  139. Zhu A, Xia J, Zuo J et al (2012) MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med Oncol 29:2701–2709

    CAS  PubMed  Google Scholar 

  140. Zuo J, Xia J, Ju F et al (2013) MicroRNA-148a can regulate runt-related transcription factor 3 gene expression via modulation of DNA methyltransferase 1 in gastric cancer. Mol Cells 35:313–319

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Song YX, Yue ZY, Wang ZN et al (2011) MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol Cancer 10:1

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Sun T, Wang C, Xing J et al (2011) MiR-429 modulates the expression of c-myc in human gastric carcinoma cells. Eur J Cancer 47:2552–2559

    CAS  PubMed  Google Scholar 

  143. Lai KW, Koh KX, Loh M et al (2010) MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur J Cancer 46:1456–1463

    CAS  PubMed  Google Scholar 

  144. Tang H, Deng M, Tang Y et al (2013) MiR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression. Clin Cancer Res 19:5602–5612

    CAS  PubMed  Google Scholar 

  145. Zhang BG, Li JF, Yu BQ et al (2012) microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep 27:1019–1026

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Jin Z, Selaru FM, Cheng Y et al (2011) MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro. Oncogene 30:1577–1585

    CAS  PubMed  Google Scholar 

  147. Brenner B, Hoshen MB, Purim O et al (2011) MicroRNAs as a potential prognostic factor in gastric cancer. World J Gastroenterol 17:3976–3985

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Xiao B, Zhu ED, Li N et al (2012) Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol Rep 27:559–566

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhou Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Guo, M., Yan, W. (2015). Epigenetics of Gastric Cancer. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_41

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics