Skip to main content

Recent Progress in the Discovery of Epigenetic Inhibitors for the Treatment of Cancer

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Epigenetics investigates heritable changes in gene transcription that do not involve a change in DNA sequence, and an increased understanding in the role of epigenetic misregulation as a key contributor to cancer has triggered the development of epigenetic targeted cancer therapies. Among these include efforts around a class of enzymes known as histone methyltransferases (HMTs). The level of interest in the development of HMT inhibitors as a class of anticancer agents has significantly grown beyond academic settings, and in the last 5 years whole research groups from biotech and big pharma have been dedicated to this area. There are now multiple reports describing small-molecule HMT inhibitors, including chemical probes and drug candidates entering the clinic as first-in-class agents. Recent progress in this emerging area is the topic of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society (2013) Cancer Facts & Figures 2013. American Cancer Society, Atlanta

    Google Scholar 

  2. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  3. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wilson CB, Rowell E, Sekimata M (2009) Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol 9:91–105

    Article  CAS  PubMed  Google Scholar 

  5. Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367

    Article  CAS  PubMed  Google Scholar 

  6. Copeland RA, Moyer MP, Richon VM (2013) Targeting genetic alterations in protein methyltransferases for personalized cancer therapeutics. Oncogene 32:939–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Copeland RA, Solomon ME, Richon VM (2009) Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 8:724–732

    Article  CAS  PubMed  Google Scholar 

  8. Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647:21–29

    Article  CAS  PubMed  Google Scholar 

  9. Cheng X, Zhang X (2007) Structural dynamics of protein lysine methylation and demethylation. Mutat Res 618:102–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dillon SC, Zhang X, Trievel RC (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6:227

    Article  PubMed Central  PubMed  Google Scholar 

  11. Varambally S, Cao Q, Ram-Shankar M et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Varambally S, Dhanasekaran S, Zhou M et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  CAS  PubMed  Google Scholar 

  13. Kleer CG, Cao Q, Varambally S et al (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A 100:11606–11611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wagener N et al (2010) Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC Cancer 10:524

    Article  PubMed Central  PubMed  Google Scholar 

  15. Takawa M, Masuda K, Kunizaki M et al (2011) Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci 102:1298–1305

    Article  CAS  PubMed  Google Scholar 

  16. Morin RD, Mendez-Lago M, Mungall AJ et al (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476:298–303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Morin RD, Johnson NA, Severson TM et al (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42:181–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Pasqualucci L, Trifonov V, Fabbri G et al (2011) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43:830–837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. McCabe MT, Graves AP, Ganji G et al (2012) Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci U S A 109:2989–2994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sneeringer CJ, Scott MP, Kuntz KW et al (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A 107:20980–20985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wigle TJ, Knutson SK, Jin L et al (2011) The Y641C mutation of EZH2 alters substrate specificity for histone H3 lysine 27 methylation states. FEBS Lett 585:3011–3014

    Article  CAS  PubMed  Google Scholar 

  22. Yap DB, Chu J, Berg T et al (2011) Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117:2451–2459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ernst T, Chase AJ, Score J et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726

    Article  CAS  PubMed  Google Scholar 

  24. Miranda TB, Cortez C, Yoo C et al (2009) DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 8:1579–1588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Borchardt RT, Keller BT, Patel-Thombre U, Neplanocin A (1984) A potent inhibitor of S-adenosylhomocysteine hydrolase and of vaccinia virus multiplication in mouse L929 cells. J Biol Chem 259:4353–4358

    CAS  PubMed  Google Scholar 

  26. Chiang PK (1998) Biological effects of inhibitors of S-adenosylhomocysteine hydrolase. Pharmacol Ther 77:115–134

    Article  CAS  PubMed  Google Scholar 

  27. Verma SK, Tian X, LaFrance LV et al (2012) Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2. ACS Med Chem Lett 3(12):1091–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. http://www.thesgc.org/scientists/chemical_probes

  29. McCabe MT, Ott HM, Ganji G et al (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112

    Article  CAS  PubMed  Google Scholar 

  30. Qi W, Chan H, Teng L et al (2012) Selective inhibition of EZH2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci U S A 109(52):21360–21365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Knutson S, Wigle TJ, Warholic NM et al (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8:890–896

    CAS  PubMed  Google Scholar 

  32. Nasveschuk CG, Gagnon A, Garapaty-Rao S et al (2014) Discovery and optimization of tetramethylpiperidine benzamides as inhibitors of EZH2. ACS Med Chem Lett 5:378-383

    Google Scholar 

  33. Garapaty-Rao S, Nasvechuk C, Gagnon A et al (2013) Identification of EZH2 and EZH1 small molecule inhibitors with selective impact on diffuse large B cell lymphoma cell growth. Chem Biol 20:1–11

    Article  Google Scholar 

  34. An open-label, multicenter, phase 1/2 study of E7438 (EZH2 histone methyl transferase [HMT] inhibitor) as a single agent in subjects with advanced solid tumors or with B cell lymphomas. NCT01897571

    Google Scholar 

  35. A phase I open-label, dose escalation study to investigate the safety, pharmacokinetics, pharmacodynamics and clinical activity of GSK2816126 in subjects with relapsed/refractory diffuse large B cell and transformed follicular lymphoma. NCT02082977

    Google Scholar 

  36. Feng Q, Wang H, Ng HH et al (2013) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058

    Article  Google Scholar 

  37. Daigle SR, Olhava EJ, Therkelsen CA et al (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20:53–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bernt KM, Zhu N, Sinha AU et al (2011) MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1LL. Cancer Cell 20:66–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Daigle SR, Olhava EJ, Therkelsen CA et al (2013) Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122:1017–1025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. http://clinicaltrials.gov/ct2/show/NCT01684150?term=mixed+lineage+leukemia$rank=1

  41. Kim W, Bird G, Neff T et al (2013) Targeted disruption of the EZH2–EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 9:643–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Verma SK, Kinght SD (2013) Recent progress in the discovery of small-molecule inhibitors of the HMT EZH2 for the treatment of cancer. Future Med Chem 5:1661–1670

    Article  CAS  PubMed  Google Scholar 

  43. Allan M, Manku S, Therrien E et al (2009) N-benzyl-1-heteroaryl-3-(trifluoromethyl)-1H-pyrazole-5-carboxamides as Inhibitors of co-activator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett 19:1218–1223

    Article  CAS  PubMed  Google Scholar 

  44. Liu F, Chen X, Allali-Hassani A et al (2009) Discovery of a 2,4-diamino-7-aminoalkoxy quinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. J Med Chem 52:7950–7953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Liu F, Chen X, Allali-Hassani A et al (2010) Protein lysine methyltransferase g9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J Med Chem 53:5844–5857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ferguson AD, Larsen NA, Howard T et al (2011) Structural basis of substrate methylation and inhibition of SMYD2. Structure 19:1262–1273

    Article  CAS  PubMed  Google Scholar 

  47. Vedadi M, Barsyte-Lovejoy D, Liu F et al (2011) A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol 7:566–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Disclosures and Acknowledgments

The author is an employee and shareholder of GlaxoSmithKline. All studies conducted at GlaxoSmithKline (GSK) were conducted in accordance with the GSK Policy on the Care, Welfare and Treatment of Laboratory Animals and were reviewed at the Institutional Animal Care and Use Committee either at GSK or by the ethical review process at the institution where the work was performed. The author is thankful to Drs. C. Creasy, J. Luengo, and C. Carpenter for their reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad K. Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Verma, S.K. (2015). Recent Progress in the Discovery of Epigenetic Inhibitors for the Treatment of Cancer. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_35

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics