Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917. doi:10.1002/ijc.25516
CAS
PubMed
CrossRef
Google Scholar
Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30. doi:10.3322/caac.21166
PubMed
CrossRef
Google Scholar
Antoniou AC, Easton DF (2006) Models of genetic susceptibility to breast cancer. Oncogene 25:5898–5905. doi:10.1038/sj.onc.1209879
CAS
PubMed
CrossRef
Google Scholar
Rivenbark AG, O’Connor SM, Coleman WB (2013) Molecular and cellular heterogeneity in breast cancer: challenges for personalized medicine. Am J Pathol 183:1113–1124. doi: 10.1016/j.ajpath.2013.08.002.
Google Scholar
Narod S, Lynch H, Conway T, Watson P, Feunteun J, Lenoir G (1993) Increasing incidence of breast cancer in family with BRCA1 mutation. Lancet 341:1101–1102
CAS
PubMed
CrossRef
Google Scholar
Dammann R, Schagdarsurengin U, Strunnikova M, Rastetter M, Seidel C, Liu L, Tommasi S, Pfeifer GP (2003) Epigenetic inactivation of the Ras-association domain family 1 (RASSF1A) gene and its function in human carcinogenesis. Histol Histopathol 18:665–677
CAS
PubMed
Google Scholar
Gupta A, Godwin AK, Vanderveer L, Lu A, Liu J (2003) Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res 63:664–673
CAS
PubMed
Google Scholar
Mohamed A, Krajewski K, Cakar B, Ma CX (2013) Targeted therapy for breast cancer Am J Pathol 183:1096–1112. doi: 10.1016/j.ajpath.2013.07.005
Google Scholar
Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68. doi:10.1186/bcr2635
PubMed Central
PubMed
CrossRef
Google Scholar
Thangavel C, Dean JL, Ertel A, Knudsen KE, Aldaz CM, Witkiewicz AK, Clarke R, Knudsen ES (2011) Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr Relat Cancer 18:333–345. doi:10.1530/ERC-10-0262
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Foekens JA, Peters HA, Grebenchtchikov N, Look MP, Meijer-van Gelder ME, Geurts-Moespot A, van der Kwast TH, Sweep CG, Klijn JG (2001) High tumor levels of vascular endothelial growth factor predict poor response to systemic therapy in advanced breast cancer. Cancer Res 61:5407–5414
CAS
PubMed
Google Scholar
Pathiraja TN, Stearns V, Oesterreich S (2010) Epigenetic regulation in estrogen receptor positive breast cancer—role in treatment response. J Mammary Gland Biol Neoplasia 15:35–47. doi:10.1007/s10911-010-9166-0
PubMed Central
PubMed
CrossRef
Google Scholar
Sharma D, Saxena NK, Davidson NE, Vertino PM (2006) Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res 66:6370–6378. doi:10.1158/0008-5472.CAN-06-0402
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Szyf M (2009) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49:243–263. doi:10.1146/annurev-pharmtox-061008-103102
CAS
PubMed
CrossRef
Google Scholar
Hurtubise A, Momparler RL (2006) Effect of histone deacetylase inhibitor LAQ824 on antineoplastic action of 5-Aza-2’-deoxycytidine (decitabine) on human breast carcinoma cells. Cancer Chemother Pharmacol 58:618–625. doi:10.1007/s00280-006-0225-6
CAS
PubMed
CrossRef
Google Scholar
Bovenzi V, Momparler RL (2001) Antineoplastic action of 5-aza-2’-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor beta and estrogen receptor alpha genes in breast carcinoma cells. Cancer Chemother Pharmacol 48:71–76
CAS
PubMed
CrossRef
Google Scholar
Qu Z, Fu J, Yan P, Hu J, Cheng S-Y, Xiao G (2010) Epigenetic repression of PDZ-LIM domain-containing protein 2 implications for the biology and treatment of breast cancer. J Biol Chem 285:11786–11792. doi:10.1074/jbc.M109.086561
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Das PM, Thor AD, Edgerton SM, Barry SK, Chen DF, Jones FE (2010) Reactivation of epigenetically silenced HER4/ERBB4 results in apoptosis of breast tumor cells. Oncogene 29:5214–5219. doi:10.1038/onc.2010.271
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Yin X, Xiang T, Li L, Su X, Shu X, Luo X, Huang J, Yuan Y, Peng W, Oberst M, Kelly K, Ren G, Tao Q (2013) DACT1, an antagonist to Wnt/β-catenin signaling, suppresses tumor cell growth and is frequently silenced in breast cancer. Breast Cancer Res 15:R23. doi:10.1186/bcr3399
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Borges S, Döppler H, Perez EA, Andorfer CA, Sun Z, Anastasiadis PZ, Thompson EA, Geiger XJ, Storz P (2013) Pharmacologic reversion of epigenetic silencing of the PRKD1 promoter blocks breast tumor cell invasion and metastasis. Breast Cancer Res 15:R66. doi:10.1186/bcr3460
PubMed Central
PubMed
CrossRef
Google Scholar
Ateeq B, Unterberger A, Szyf M, Rabbani SA (2008) Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia 10:266–278
CAS
PubMed Central
PubMed
Google Scholar
Singh KP, Treas J, Tyagi T, Gao W (2012) DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells. Cancer Lett 316:62–69. doi:10.1016/j.canlet.2011.10.022
CAS
PubMed
CrossRef
Google Scholar
Di Cello F, Cope L, Li H, Jeschke J, Wang W, Baylin SB, Zahnow CA (2013) Methylation of the claudin 1 promoter is associated with loss of expression in estrogen receptor positive breast cancer. PLoS ONE 8:e68630. doi:10.1371/journal.pone.0068630
PubMed Central
PubMed
CrossRef
Google Scholar
Zeng L, Jarrett C, Brown K, Gillespie KM, Holly JMP, Perks CM (2013) Insulin-like growth factor binding protein-3 (IGFBP-3) plays a role in the anti-tumorigenic effects of 5-Aza-2′-deoxycytidine (AZA) in breast cancer cells. Exp Cell Res 319:2282–2295. doi:10.1016/j.yexcr.2013.06.011
CAS
PubMed
CrossRef
Google Scholar
Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE (2001) Synergistic activation of functional estrogen receptor (ER)-α by DNA methyltransferase and histone deacetylase inhibition in human ER-α-negative breast cancer cells. Cancer Res 61:7025–7029
CAS
PubMed
Google Scholar
Ari F, Napieralski R, Ulukaya E, Dere E, Colling C, Honert K, Krüger A, Kiechle M, Schmitt M (2011) Modulation of protein expression levels and DNA methylation status of breast cancer metastasis genes by anthracycline-based chemotherapy and the demethylating agent decitabine. Cell Biochem Funct 29:651–659. doi:10.1002/cbf.1801
CAS
PubMed
CrossRef
Google Scholar
Pryzbylkowski P, Obajimi O, Keen JC (2008) Trichostatin A and 5 Aza-2′ deoxycytidine decrease estrogen receptor mRNA stability in ER positive MCF7 cells through modulation of HuR. Breast Cancer Res Treat 111:15–25. doi:10.1007/s10549-007-9751-0
CAS
PubMed
CrossRef
Google Scholar
Jawaid K, Crane SR, Nowers JL, Lacey M, Whitehead SA (2010) Long-term genistein treatment of MCF-7 cells decreases acetylated histone 3 expression and alters growth responses to mitogens and histone deacetylase inhibitors. J Steroid Biochem Mol Biol 120:164–171. doi:10.1016/j.jsbmb.2010.04.007
CAS
PubMed
CrossRef
Google Scholar
Sandhu R, Rivenbark AG, Coleman WB (2012) Enhancement of chemotherapeutic efficacy in hypermethylator breast cancer cells through targeted and pharmacologic inhibition of DNMT3b. Breast Cancer Res Treat 131:385–399. doi:10.1007/s10549-011-1409-2
CAS
PubMed
CrossRef
Google Scholar
Mirza S, Sharma G, Pandya P, Ralhan R (2010) Demethylating agent 5-aza-2-deoxycytidine enhances susceptibility of breast cancer cells to anticancer agents. Mol Cell Biochem 342:101–109. doi:10.1007/s11010-010-0473-y
CAS
PubMed
CrossRef
Google Scholar
Vijayaraghavalu S, Peetla C, Lu S, Labhasetwar V (2012) Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions. Mol Pharm 9:2730–2742. doi:10.1021/mp300281t
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Vijayaraghavalu S, Dermawan JK, Cheriyath V, Labhasetwar V (2013) Highly synergistic effect of sequential treatment with epigenetic and anticancer drugs to overcome drug resistance in breast cancer cells is mediated via activation of p21 gene expression leading to G2/M cycle arrest. Mol Pharm 10:337–352. doi:10.1021/mp3004622
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Bianco C, Castro NP, Baraty C, Rollman K, Held N, Rangel MC, Karasawa H, Gonzales M, Strizzi L, Salomon DS (2013) Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells. J Cell Physiol 228:1174–1188. doi:10.1002/jcp.24271
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Stone A, Valdés-Mora F, Gee JMW, Farrow L, McClelland RA, Fiegl H, Dutkowski C, McCloy RA, Sutherland RL, Musgrove EA, Nicholson RI (2012) Tamoxifen-induced epigenetic silencing of oestrogen-regulated genes in anti-hormone resistant breast cancer. PLoS ONE 7:e40466. doi:10.1371/journal.pone.0040466
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Thakur S, Feng X, Qiao Shi Z, Ganapathy A, Kumar Mishra M, Atadja P, Morris D, Riabowol K (2012) ING1 and 5-azacytidine act synergistically to block breast cancer cell growth. PLoS One 7:e43671. doi:10.1371/journal.pone.0043671
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Tikoo K, Ali IY, Gupta J, Gupta C (2009) 5-Azacytidine prevents cisplatin induced nephrotoxicity and potentiates anticancer activity of cisplatin by involving inhibition of metallothionein, pAKT and DNMT1 expression in chemical induced cancer rats. Toxicol Lett 191:158–166. doi:10.1016/j.toxlet.2009.08.018
CAS
PubMed
CrossRef
Google Scholar
Weber J (2002) NCT00030615. Decitabine in treating patients with advanced solid tumors. https://clinicaltrials.gov
Aparicio A, Eads CA, Leong LA, Laird PW, Newman EM, Synold TW, Baker SD, Zhao M, Weber JS (2003) Phase I trial of continuous infusion 5-aza-2’-deoxycytidine. Cancer Chemother Pharmacol 51:231–239. doi:10.1007/s00280-002-0563-y
CAS
PubMed
Google Scholar
Appleton K, Mackay HJ, Judson I, Plumb JA, McCormick C, Strathdee G, Lee C, Barrett S, Reade S, Jadayel D, Tang A, Bellenger K, Mackay L, Setanoians A, Schätzlein A, Twelves C, Kaye SB, Brown R (2007) Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J Clin Oncol Off J Am Soc Clin Oncol 25:4603–4609. doi:10.1200/JCO.2007.10.8688
CAS
CrossRef
Google Scholar
Khong HT (2008) NCT00748553. A phase I/II clinical trial of vidaza with abraxane in the treatment of patients with advanced or metastatic solid tumors and breast cancer (VA). https://clinicaltrials.gov
Feng W, Lu Z, Luo RZ, Zhang X, Seto E, Liao WS-L, Yu Y (2007) Multiple histone deacetylases repress tumor suppressor gene ARHI in breast cancer. Int J Cancer 120:1664–1668. doi:10.1002/ijc.22474
CAS
PubMed
CrossRef
Google Scholar
Yarosh W, Barrientos T, Esmailpour T, Lin L, Carpenter PM, Osann K, Anton-Culver H, Huang T (2008) TBX3 is overexpressed in breast cancer and represses p14 ARF by interacting with histone deacetylases. Cancer Res 68:693–699. doi:10.1158/0008-5472.CAN-07-5012
CAS
PubMed
CrossRef
Google Scholar
Chakravarty G, Rider B, Mondal D (2011) Cytoplasmic compartmentalization of SOX9 abrogates the growth arrest response of breast cancer cells that can be rescued by trichostatin A treatment. Cancer Biol Ther 11:71–83. doi:10.4161/cbt.11.1.13952
CAS
PubMed
CrossRef
Google Scholar
Kim S-H, Kang H-J, Na H, Lee M-O (2010) Trichostatin A enhances acetylation as well as protein stability of ERalpha through induction of p300 protein. Breast Cancer Res 12:R22. doi:10.1186/bcr2562
PubMed Central
PubMed
CrossRef
Google Scholar
Reid G, Métivier R, Lin C-Y, Denger S, Ibberson D, Ivacevic T, Brand H, Benes V, Liu ET, Gannon F (2005) Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 24:4894–4907. doi:10.1038/sj.onc.1208662
CAS
PubMed
CrossRef
Google Scholar
Jang ER, Lim S-J, Lee ES, Jeong G, Kim T-Y, Bang Y-J, Lee J-S (2003) The histone deacetylase inhibitor trichostatin A sensitizes estrogen receptor α-negative breast cancer cells to tamoxifen. Oncogene 23:1724–1736. doi:10.1038/sj.onc.1207315
CrossRef
Google Scholar
Collins-Burow B (2011) The histone deacetylase inhibitor trichostatin A alters microRNA expression profiles in apoptosis-resistant breast cancer cells. Oncol Rep. doi:10.3892/or.2011.1488
PubMed Central
PubMed
Google Scholar
Tu Z, Li H, Ma Y, Tang B, Tian J, Akers W, Achilefu S, Gu Y (2012) The enhanced antiproliferative response to combined treatment of trichostatin A with raloxifene in MCF-7 breast cancer cells and its relevance to estrogen receptor β expression. Mol Cell Biochem 366:111–122. doi:10.1007/s11010-012-1288-9
CAS
PubMed
CrossRef
Google Scholar
Pitta CA, Papageorgis P, Charalambous C, Constantinou AI (2013) Reversal of ER-β silencing by chromatin modifying agents overrides acquired tamoxifen resistance. Cancer Lett 337:167–176. doi:10.1016/j.canlet.2013.05.031
CAS
PubMed
CrossRef
Google Scholar
Hostetter CL, Licata LA, Keen JC (2009) Timing is everything: Order of administration of 5-aza 2′ deoxycytidine, trichostatin A and tamoxifen changes estrogen receptor mRNA expression and cell sensitivity. Cancer Lett 275:178–184. doi:10.1016/j.canlet.2008.10.005
CAS
PubMed
CrossRef
Google Scholar
Fan J, Yin W-J, Lu J-S, Wang L, Wu J, Wu F-Y, Di G-H, Shen Z-Z, Shao Z-M (2008) ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol 134:883–890. doi:10.1007/s00432-008-0354-x
CAS
PubMed
CrossRef
Google Scholar
Hung W-C (2012) Inhibition of lymphangiogenic factor VEGF-C expression and production by the histone deacetylase inhibitor suberoylanilide hydroxamic acid in breast cancer cells. Oncol Rep. doi:10.3892/or.2012.2188
Google Scholar
Chiu H-W, Yeh Y-L, Wang Y-C, Huang W-J, Chen Y-A, Chiou Y-S, Ho S-Y, Lin P, Wang Y-J (2013) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, enhances radiosensitivity and suppresses lung metastasis in breast cancer in vitro and in vivo. PLoS ONE 8:e76340. doi:10.1371/journal.pone.0076340
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Eades G, Yang M, Yao Y, Zhang Y, Zhou Q (2011) miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 286:40725–40733. doi:10.1074/jbc.M111.275495
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Bellarosa D, Bressan A, Bigioni M, Parlani M, Maggi CA, Binaschi M (2012) SAHA/Vorinostat induces the expression of the CD137 receptor/ligand system and enhances apoptosis mediated by soluble CD137 receptor in a human breast cancer cell line. Int J Oncol 41:1486–1494. doi:10.3892/ijo.2012.1551
CAS
PubMed
Google Scholar
Lu S, Labhasetwar V (2013) Drug resistant breast cancer cell line displays cancer stem cell phenotype and responds sensitively to epigenetic drug SAHA. Drug Deliv Transl Res 3:183–194. doi:10.1007/s13346-012-0113-z
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Rao R, Balusu R, Fiskus W, Mudunuru U, Venkannagari S, Chauhan L, Smith JE, Hembruff SL, Ha K, Atadja P, Bhalla KN (2012) Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells. Mol Cancer Ther 11:973–983. doi:10.1158/1535-7163.MCT-11-0979
CAS
PubMed
CrossRef
Google Scholar
Huang Y, Vasilatos SN, Boric L, Shaw PG, Davidson NE (2012) Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells. Breast Cancer Res Treat 131:777–789. doi:10.1007/s10549-011-1480-8
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Vasilatos SN, Katz TA, Oesterreich S, Wan Y, Davidson NE, Huang Y (2013) Crosstalk between lysine-specific demethylase 1 (LSD1) and histone deacetylases mediates antineoplastic efficacy of HDAC inhibitors in human breast cancer cells. Carcinogenesis 34:1196–1207. doi:10.1093/carcin/bgt033
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Fortunati N, Catalano MG, Marano F, Mugoni V, Pugliese M, Bosco O, Mainini F, Boccuzzi G (2010) The pan-DAC inhibitor LBH589 is a multi-functional agent in breast cancer cells: cytotoxic drug and inducer of sodium-iodide symporter (NIS). Breast Cancer Res Treat 124:667–675. doi:10.1007/s10549-010-0789-z
CAS
PubMed
CrossRef
Google Scholar
Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME, Collins-Burow BM (2012) Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res 14:R79. doi:10.1186/bcr3192
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Chen S, Ye J, Kijima I, Evans D (2010) The HDAC inhibitor LBH589 (panobinostat) is an inhibitory modulator of aromatase gene expression. Proc Natl Acad Sci 107:11032–11037. doi:10.1073/pnas.1000917107
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Wang S, Huang J, Lyu H, Lee C-K, Tan J, Wang J, Liu B (2013) Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death Dis 4:e556. doi:10.1038/cddis.2013.79
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Huang X, Wang S, Lee C-K, Yang X, Liu B (2011) HDAC inhibitor SNDX-275 enhances efficacy of trastuzumab in erbB2-overexpressing breast cancer cells and exhibits potential to overcome trastuzumab resistance. Cancer Lett 307:72–79. doi:10.1016/j.canlet.2011.03.019
CAS
PubMed
CrossRef
Google Scholar
Sabnis GJ, Goloubeva O, Chumsri S, Nguyen N, Sukumar S, Brodie AMH (2011) Functional activation of the estrogen receptor-α and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res 71:1893–1903. doi:10.1158/0008-5472.CAN-10-2458
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Chumsri S, Sabnis GJ, Howes T, Brodie AMH (2011) Aromatase inhibitors and xenograft studies. Steroids 76:730–735. doi:10.1016/j.steroids.2011.02.033
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Srivastava RK, Kurzrock R, Shankar S (2010) MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther 9:3254–3266. doi:10.1158/1535-7163.MCT-10-0582
CAS
PubMed
CrossRef
Google Scholar
Olsen CM, Meussen-Elholm ETM, Røste LS, Taubøll E (2004) Antiepileptic drugs inhibit cell growth in the human breast cancer cell line MCF7. Mol Cell Endocrinol 213:173–179. doi:10.1016/j.mce.2003.10.032
CAS
PubMed
CrossRef
Google Scholar
Hodges-Gallagher L, Valentine CD, Bader SE, Kushner PJ (2007) Inhibition of histone deacetylase enhances the anti-proliferative action of antiestrogens on breast cancer cells and blocks tamoxifen-induced proliferation of uterine cells. Breast Cancer Res Treat 105:297–309. doi:10.1007/s10549-006-9459-6
CAS
PubMed
CrossRef
Google Scholar
Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339. doi:10.1038/nm.2305
PubMed
CrossRef
Google Scholar
Vansteenkiste J, Van Cutsem E, Dumez H, Chen C, Ricker JL, Randolph SS, Schöffski P (2008) Early phase II trial of oral Vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Invest New Drugs 26:483–488. doi:10.1007/s10637-008-9131-6
CAS
PubMed
CrossRef
Google Scholar
Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J, Frankel P, Smith DD, Doroshow JH, Gandara DR, Aparicio A, Somlo G, Wong C (2008) A phase II trial of Vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res 14:7138–7142. doi:10.1158/1078-0432.CCR-08-0122
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Munster PN, Marchion D, Thomas S, Egorin M, Minton S, Springett G, Lee J-H, Simon G, Chiappori A, Sullivan D, Daud A (2009) Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker. Br J Cancer 101:1044–1050. doi:10.1038/sj.bjc.6605293
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Ramaswamy B, Fiskus W, Cohen B, Pellegrino C, Hershman DL, Chuang E, Luu T, Somlo G, Goetz M, Swaby R, Shapiro CL, Stearns V, Christos P, Espinoza-Delgado I, Bhalla K, Sparano JA (2011) Phase I–II study of vorinostat plus paclitaxel and bevacizumab in metastatic breast cancer: evidence for vorinostat-induced tubulin acetylation and Hsp90 inhibition in vivo. Breast Cancer Res Treat 132:1063–1072. doi:10.1007/s10549-011-1928-x
PubMed Central
PubMed
CrossRef
Google Scholar
Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, Melisko M, Ismail-Khan R, Rugo H, Moasser M, Minton SE (2011) A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer 104:1828–1835. doi:10.1038/bjc.2011.156
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Stathis A, Hotte SJ, Chen EX, Hirte HW, Oza AM, Moretto P, Webster S, Laughlin A, Stayner L-A, McGill S, Wang L, Zhang W, Espinoza-Delgado I, Holleran JL, Egorin MJ, Siu LL (2011) Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Clin Cancer Res 17:1582–1590. doi:10.1158/1078-0432.CCR-10-1893
CAS
PubMed
CrossRef
Google Scholar
Yardley DA, Ismail-Khan RR, Melichar B, Lichinitser M, Munster PN, Klein PM, Cruickshank S, Miller KD, Lee MJ, Trepel JB (2013) Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol Off J Am Soc Clin Oncol 31:2128–2135. doi:10.1200/JCO.2012.43.7251
CAS
CrossRef
Google Scholar
Stearns V (2011) NCT01349959. Azacitidine and entinostat in treating patients with advanced breast cancer. https://clinicaltrials.gov
Finn R (2008) NCT00777335. Study of panobinostat monotherapy in women with v-ERB-B2 avian erythroblastic leukemia viral oncogene homolog 2 (HER2) positive locally recurrent or metastatic breast cancer. https://clinicaltrials.gov
Jones SF, Infante JR, Thompson DS, Mohyuddin A, Bendell JC, Yardley DA, Burris HA 3rd (2012) A phase I trial of oral administration of panobinostat in combination with paclitaxel and carboplatin in patients with solid tumors. Cancer Chemother Pharmacol 70:471–475. doi:10.1007/s00280-012-1931-x
CAS
PubMed
CrossRef
Google Scholar
O’Regan R (2010) NCT01194908. Re-expression of ER in triple negative breast cancers. https://clinicaltrials.gov
Munster P (2009) NCT01010854. Valproic acid in combination with FEC100 for primary therapy in patients with breast cancer (VPA-FEC100). https://clinicaltrials.gov
Münster P, Marchion D, Bicaku E, Schmitt M, Lee JH, DeConti R, Simon G, Fishman M, Minton S, Garrett C, Chiappori A, Lush R, Sullivan D, Daud A (2007) Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J Clin Oncol Off J Am Soc Clin Oncol 25:1979–1985. doi:10.1200/JCO.2006.08.616510.1200/JCO.2006.08.6165
CrossRef
Google Scholar
(2010) NCT01171924. A phase Ib expansion study investigating the safety, efficacy, and pharmacokinetics of intravenous CUDC-101 in subjects with advanced head and neck, gastric, breast, liver and non-small cell lung cancer tumors. https://clinicaltrials.gov
Lai C-J, Bao R, Tao X, Wang J, Atoyan R, Qu H, Wang D-G, Yin L, Samson M, Forrester J, Zifcak B, Xu G-X, DellaRocca S, Zhai H-X, Cai X, Munger WE, Keegan M, Pepicelli CV, Qian C (2010) CUDC-101, a multitargeted inhibitor of histone deacetylase, epidermal growth factor receptor, and human epidermal growth factor receptor 2, exerts potent anticancer activity. Cancer Res 70:3647–3656. doi:10.1158/0008-5472.CAN-09-3360
CAS
PubMed
CrossRef
Google Scholar
Hervouet E, Vallette FM, Cartron P-F (2009) Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 4:487–499
CAS
PubMed
CrossRef
Google Scholar
Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK (2012) Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol 25:61–73. doi:10.1021/tx200378c
CAS
PubMed
CrossRef
Google Scholar
Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R (2013) Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on dna methyltransferases and associated proteins. J Breast Cancer 16:23–31. doi:10.4048/jbc.2013.16.1.23
PubMed Central
PubMed
CrossRef
Google Scholar
Jiang M, Huang O, Zhang X, Xie Z, Shen A, Liu H, Geng M, Shen K (2013) Curcumin induces cell death and restores tamoxifen sensitivity in the antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. Molecules 18:701–720. doi:10.3390/molecules18010701
CAS
PubMed
CrossRef
Google Scholar
Li Y, Chen H, Hardy TM, Tollefsbol TO (2013) Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS One 8:e54369. doi:10.1371/journal.pone.0054369
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Montenegro MF, Sáez-Ayala M, Piñero-Madrona A, Cabezas-Herrera J, Rodríguez-López JN (2012) Reactivation of the tumour suppressor RASSF1A in breast cancer by simultaneous targeting of DNA and E2F1 methylation. PLoS One 7:e52231. doi:10.1371/journal.pone.0052231
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Liu H (2012) MicroRNAs in breast cancer initiation and progression. Cell Mol Life Sci 69:3587–3599. doi:10.1007/s00018-012-1128-9
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Rivenbark AG, Stolzenburg S, Beltran AS, Yuan X, Rots MG, Strahl BD, Blancafort P (2012) Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7:350–360. doi:10.4161/epi.19507
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Beltran AS, Russo A, Lara H, Fan C, Lizardi PM, Blancafort P (2011) Suppression of breast tumor growth and metastasis by an engineered transcription factor. PLoS ONE 6:e24595. doi:10.1371/journal.pone.0024595
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Holliday DL, Speirs V (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13:215. doi:10.1186/bcr2889
PubMed Central
PubMed
CrossRef
Google Scholar
Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe J-P, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo W-L, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527. doi:10.1016/j.ccr.2006.10.008
CAS
PubMed Central
PubMed
CrossRef
Google Scholar
Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51. doi:10.1038/nrc1779
CAS
PubMed
CrossRef
Google Scholar
Novartis Pharmaceuticals (2008) NCT00788931. A trial l of panobinostat given in combination with trastuzumab and paclitaxel in adult female patients with HER2 positive metastatic breast cancer. https://clinicaltrials.gov
Burris HA (2008) NCT00632489. LBH589 in combination with capecitabine plus/minus (±) lapatinib in breast cancer patients. https://clinicaltrials.gov
Tan W (2010) NCT01105312. Panobinostat and letrozole in treating patients with metastatic breast cancer. In: clinicaltrials.org
Google Scholar
Pharmaceuticals N (2007) NCT00567879. A trial of panobinostat and trastuzumab for adult female patients with HER2 positive metastatic breast cancer whose disease has progressed on or after trastuzumab. https://clinicaltrials.gov
Hurvitz S (2008) NCT00777049. Study of panobinostat monotherapy in women with HER2 negative locally recurrent or metastatic breast cancer. https://clinicaltrials.gov
Collins-Burow B (2009) NCT00993642. ERB-B4 after treatment with HDAC inhibitor in ER + tamoxifen refractory breast cancer. https://clinicaltrials.gov
Kummar S (2001) NCT00020579. MS-275 in treating patients with advanced solid tumors or lymphoma. https://clinicaltrials.gov
Ueno N (2011) NCT01434303. Entinostat, lapatinib ditosylate and trastuzumab in patients with locally recurrent or distant relapsed metastatic breast cancer previously treated with trastuzumab only. https://clinicaltrials.gov
McCulloch W (2012) NCT01594398. Study to assess food effect on pharmacokinetics of entinostat in subjects with breast cancer or non-small cell lung cancer (ENCORE110). https://clinicaltrials.gov
Yardley D (2008) NCT00676663. Study to evaluate exemestane with and without SNDX-275 in treatment of postmenopausal women with advanced breast cancer (ENCORE301). https://clinicaltrials.gov
Pharmaceuticals S (2009) NCT00828854. A phase 2, multicenter study of the effect of the addition of SNDX-275 to continued aromatase inhibitor (AI) therapy in postmenopausal women With ER + breast cancer whose disease is progressing. https://clinicaltrials.gov
Chumsri S (2010) NCT01234532. Entinostat and anastrozole in treating postmenopausal women with triple-negative breast cancer that can be removed by surgery. https://clinicaltrials.gov
Linden H (2012) NCT01720602. Vorinostat in treating patients with stage IV breast cancer receiving hormone therapy. https://clinicaltrials.gov
Linden H (2010) NCT01153672. Vorinostat in treating patients with stage IV breast cancer receiving aromatase inhibitor therapy. https://clinicaltrials.gov
Luu T (2010) NCT01084057. Ixabepilone and vorinostat in treating patients with metastatic breast cancer. https://clinicaltrials.gov
Esserman L (2008) NCT00788112. orinostat in treating women with ductal carcinoma in situ of the breast. https://clinicaltrials.gov
Sparano J (2006) NCT00368875. Vorinostat, paclitaxel, and bevacizumab in treating patients with metastatic breast cancer and/or breast cancer that has recurred in the chest wall and cannot be removed by surgery. https://clinicaltrials.gov
Swaby R (2005) NCT00258349. Vorinostat and trastuzumab in treating patients with metastatic or locally recurrent breast cancer. https://clinicaltrials.gov
Stearns V (2005) NCT00262834. Vorinostat in treating women who are undergoing surgery for newly diagnosed stage I, stage II, or stage III breast cancer. https://clinicaltrials.gov
Stearns V (2008) NCT00616967. Carboplatin and paclitaxel albumin-stabilized nanoparticle formulation with or without vorinostat in treating women with breast cancer that can be removed by surgery. https://clinicaltrials.gov
Luu T (2005) NCT00132002. Suberoylanilide hydroxamic acid in treating patients with progressive stage IV breast cancer. https://clinicaltrials.gov
Minton S (2006) NCT00365599. Phase II trial of SAHA & tamoxifen for patients with breast cancer. https://clinicaltrials.gov
Chumsri S (2010) NCT01118975. Vorinostat and lapatinib in advanced solid tumors and advanced breast cancer to evaluate response and biomarkers. https://clinicaltrials.gov