Skip to main content

Isolation and Characterization of Stem Cells in the Adult Mammalian Ovary

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1235))

Abstract

Female mammals are born with a fixed pool of germ cells, which does not replenish during adult life. However, this has been recently challenged and adult ovaries produce oocytes throughout adult life just like sperm in the testes. Evidence is accumulating on the presence of ovarian stem cells, but the need for robust protocols to isolate, identify, further characterize, and subject them to various functionality tests is essential. Knowledge about the function and potential of ovarian stem cells is well demonstrated by various groups, but their true identity remains elusive because of the variability in the approaches used to identify them by different groups. In order to address this we have made attempts to compile our protocols to isolate, identify, characterize, and culture the stem cells using different animal models including human. Two distinct populations of stem cells exist in adult mammalian ovary, including very small embryonic-like stem cells (VSELs) and the progenitors termed ovarian germ stem cells (OGSCs). VSELs are relatively quiescent and undergo asymmetric cell division to give rise to OGSCs, which divide rapidly, occasionally form germ cell nests and undergo meiosis and differentiation into oocytes, which are surrounded by granulosa cells to assemble as primordial follicles.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Johnson J, Canning J, Kaneko T et al (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428:145–150

    Article  CAS  PubMed  Google Scholar 

  2. Woods DC, Tilly JL (2013) An evolutionary perspective on adult female germline stem cell function from flies to humans. Semin Reprod Med 31:24–32

    Article  PubMed  Google Scholar 

  3. Bhartiya D, Sriraman K, Parte S et al (2013) Ovarian stem cells: absence of evidence is not evidence of absence. J Ovarian Res 6:65 [Epub ahead of print]

    Article  PubMed Central  PubMed  Google Scholar 

  4. Virant-Klun I, Stimpfel M, Skutella T (2012) Stem cells in adult human ovaries: from female fertility to ovarian cancer. Curr Pharm Des 18:283–292

    Article  CAS  PubMed  Google Scholar 

  5. Woods DC, Tilly JL (2013) Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nat Protoc 20:966–988. doi:10.1038/nprot.2013.047

    Article  Google Scholar 

  6. Zou K, Yuan Z, Yang Z et al (2009) Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 11:631–636

    Article  CAS  PubMed  Google Scholar 

  7. Salamanca CM, Maines-Bandiera SL, Leung PC et al (2004) Effects of epidermal growth factor/hydrocortisone on the growth and differentiation of human ovarian surface epithelium. J Soc Gynecol Investig 11:241–251

    Article  CAS  PubMed  Google Scholar 

  8. Auersperg N, Wong AS, Choi KC et al (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22:255–288

    CAS  PubMed  Google Scholar 

  9. Bukovsky A, Svetlikova M, Caudle MR (2005) Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol 3:17–30

    Article  PubMed Central  PubMed  Google Scholar 

  10. Parte S, Bhartiya D, Telang J et al (2011) Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 2:1451–1464

    Article  Google Scholar 

  11. Virant-Klun I, Zech N, Rozman P et al (2008) Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation 76:843–856

    Article  CAS  PubMed  Google Scholar 

  12. Virant-Klun I, Rozman P, Cvjeticanin B et al (2009) Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev 18:137–149

    Article  CAS  PubMed  Google Scholar 

  13. Parte S, Bhartiya D, Manjramkar DD et al (2013) Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture. J Ovarian Res 6:20. doi:10.1186/1757-2215-6-20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Parte S, Bhartiya D, Patel H et al (2014) Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro. J Ovarian Res 7:25

    Article  PubMed  Google Scholar 

  15. Castrillon DH, Quade BJ, Wang TY et al (2000) The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci U S A 97:9585–9590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. White YA, Woods DC, Takai Y et al (2012) Oocyte formation in mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 18:413–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bukovsky A, Caudle MR (2012) Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial. Reprod Biol Endocrinol 10:97

    Article  PubMed Central  PubMed  Google Scholar 

  18. Virant-Klun I, Stimpfel M, Skutella T (2011) Ovarian pluripotent/multipotent stem cells and in vitro oogenesis in mammals. Histol Histopathol 8:1071–1082

    Google Scholar 

  19. Stimpfel M, Skutella T, Cvjeticanin B et al (2013) Isolation, characterization and differentiation of cells expressing pluripotent/multipotent markers from adult human ovaries. Cell Tissue Res 354(2):593–607

    Article  PubMed  Google Scholar 

  20. Bhartiya D, Unni S, Parte S et al (2013) Very small embryonic-like stem cells: implications in reproductive biology. Biomed Res Int. doi:10.1155/2013/682326

    Google Scholar 

  21. Bhartiya D, Kasiviswanathan S, Unni SK et al (2010) Newer insights into pre-meiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. J Histochem Cytochem 58:1093–1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bhartiya D, Sriraman K, Parte S (2012) Stem cell interaction with somatic niche may hold the key to fertility restoration in cancer patients. Obstet Gynecol Int 2012:921082. doi:10.1155/2012/921082

    PubMed Central  PubMed  Google Scholar 

  23. Lei L, Spradling AC (2013) Mouse primordial germ cells produce cysts that partially fragment prior to meiosis. Development 140:2075–2081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kucia M, Reca R, Campbell FR et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2:857–869

    Article  Google Scholar 

  25. Abbott A (2013) Doubt cast over tiny stem cells. Nature 499:390

    Article  CAS  PubMed  Google Scholar 

  26. Miyanishi M, Mori Y, Seita J et al (2013) Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Rep 1:198–208

    Article  CAS  Google Scholar 

  27. Ratajczak MZ, Zuba-Surma E, Wojakowski W et al (2014) Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia 28(3):473–484. doi:10.1038/leu.2013.255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sriraman K, Bhartiya D, Bhutda S (2013) Mouse ovarian very small embryonic-like stem cells resist chemotherapy and initiate oocyte-specific differentiation in vitro in response to follicle stimulating hormone. Mol Rep Dev. (under revision)

    Google Scholar 

  29. Patel H, Bhartiya D, Parte S et al (2013) Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. J Ovarian Res 6:52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Siegel ET, Kim HG, Nishimoto HK et al (2013) The molecular basis of impaired follicle-stimulating hormone action: evidence from human mutations and mouse models. Reprod Sci 20:211–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bhartiya D, Sriraman K, Gunjal P et al (2012) Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries. J Ovarian Res 5:32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Symonds DA, Tomic D, Miller KP et al (2005) Methoxychlor induces proliferation of the mouse ovarian surface epithelium. Toxicol Sci 83:355–362

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed N, Thompson EW, Quinn MA (2007) Epithelial mesenchymal inter conversions in normal ovarian surface epithelium and ovarian carcinomas: An exception to the norm. J Cell Physiol 213:581–588

    Article  CAS  PubMed  Google Scholar 

  34. Zuba-Surma EK, Kucia M, Ratajczak J et al (2009) “Small stem cells” in adult tissues: very small embryonic-like stem cells stand up! Cytometry A 75:4–13

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Study was financially supported by Institute core support provided by Indian Council for Medical Research, Government of India, New Delhi. Research fellowship of SP from CSIR and KS from DST, Government of India, New Delhi, India are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Bhartiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Parte, S., Patel, H., Sriraman, K., Bhartiya, D. (2015). Isolation and Characterization of Stem Cells in the Adult Mammalian Ovary. In: Rich, I. (eds) Stem Cell Protocols. Methods in Molecular Biology, vol 1235. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1785-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1785-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1784-6

  • Online ISBN: 978-1-4939-1785-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics