High Yield Recovery of Equine Mesenchymal Stem Cells from Umbilical Cord Matrix/Wharton’s Jelly Using a Semi-automated Process

  • Timo Z. Nazari-Shafti
  • Ivone G. Bruno
  • Rudy F. Martinez
  • Michael E. Coleman
  • Eckhard U. Alt
  • Scott R. McClure
Part of the Methods in Molecular Biology book series (MIMB, volume 1235)


Umbilical cord is an abundant source of perinatal, plastic adherent mesenchymal stem cells (UC-MSCs). UC-MSCs exhibit robust stemness and strong immunosuppressive and regenerative effects in vivo. This protocol describes enzymatic and mechanical dissociation of umbilical cord matrix (Wharton’s jelly) that results in efficient isolation of large numbers of fresh nucleated umbilical cord regenerative cells (UC-RCs) that, when cultured on plastic, exhibit similar characteristics of UC-MSCs. This protocol potentially alleviates the need for culture expansion to obtain large numbers of cells required for clinical application. Dissociation is achieved with a blend of collagenase and neutral proteases with agitation at 37 °C in a semi-automatic system. Average expected yield is 1.65 × 106 cells/g tissue with 93 % viability. This protocol has been successfully used to isolate an uncultured nucleated regenerative cell population (also referred to as stromal vascular fraction or SVF) from surgically debrided skin and from human, equine, and canine adipose tissue. The procedure requires less than 30 min for tissue dissection and less than 100 min for cell extraction. Quickly obtaining a large number of UC-RCs that have pluripotent differentiation capacity without the complexity and risks of culture expansion could simplify and expand the use of UC-RCs in clinical as well as research applications.

Key words

Equine Wharton’s jelly Umbilical cord mesenchymal stem cells Isolation 


  1. 1.
    Zhang YY, Yue J, Che H et al (2013) BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells. J Cell Physiol. doi: 10.1002/jcp.24435 PubMedCentralGoogle Scholar
  2. 2.
    Zhou J, Xu C, Wu G et al (2011) In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Acta Biomater 7:3999–4006PubMedCrossRefGoogle Scholar
  3. 3.
    Young RG, Butler DL, Weber W et al (1998) Use of mesenchymal stem cells in collagen matrix for Achilles tendon repair. J Orthop Res 16:406–413PubMedCrossRefGoogle Scholar
  4. 4.
    Hung MJ, Wen MC, Huang YT et al (2013) Fascia tissue engineering with human adipose-derived stem cells in a murine model: Implications for pelvic floor reconstruction. J Formos Med Assoc. 167–168. doi:pii: S0929-6646Google Scholar
  5. 5.
    Caballero M, Skancke MD, Halevi AE et al (2013) Effects of connective tissue growth factor on the regulation of elastogenesis in human umbilical cord-derived mesenchymal stem cells. Ann Plast Surg 70:568–573PubMedCrossRefGoogle Scholar
  6. 6.
    Anzalone R, Lo IM, Loria T et al (2011) Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev 7:342–363PubMedCrossRefGoogle Scholar
  7. 7.
    Chen QQ, Yan L, Wang CZ et al (2013) Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses. World J Gastroenterol 19:4702–4717PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wada N, Gronthos S, Bartold PM (2013) Immunomodulatory effects of stem cells. Periodontol 63:198–216CrossRefGoogle Scholar
  9. 9.
    Takehara N (2013) Cell therapy for cardiovascular regeneration. Ann Vasc Dis 6:137–144PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ruzzini L, Longo UG, Rizzello G et al (2012) Stem cells and tendinopathy: state of the art from the basic science to clinic application. Muscles Ligaments Tendons J 2:235–238PubMedCentralPubMedGoogle Scholar
  11. 11.
    Stewart AA, Barrett JG, Byron CR et al (2009) Comparison of equine tendon-, muscle- and bone marrow-derived cells cultured on tendon matrix. Am J Vet Res 70:750–757PubMedCrossRefGoogle Scholar
  12. 12.
    Izadpanah R, Trygg C, Patel B et al (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Yoshimura H, Muneta T, Nimura A et al (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovioum, periosteum, adipose tissue and muscle. Cell Tissue Res 27:449–462CrossRefGoogle Scholar
  14. 14.
    Harris DT (2013) Umbilical cord tissue mesenchymal stem cells: characterization and clinical applications. Curr Stem Cell Res Ther 8:394–399PubMedCrossRefGoogle Scholar
  15. 15.
    Ryu YJ, Seol HS, Cho TJ et al (2013) Comparison of the ultrastructural and immunophenotypic characteristics of human umbilical cord-derived mesenchymal stromal cells and in situ cells in Wharton’s jelly. Ultrastruct Pathol 37:196–203PubMedCrossRefGoogle Scholar
  16. 16.
    Kadar K, Kiraly M, Porcsalmy B et al (2009) Differentiation potential of stem cells from human dental origin—promise for tissue engineering. J Physiol Pharmacol 60(Suppl):167–175PubMedGoogle Scholar
  17. 17.
    Hsieh JY, Fu YS, Chang SJ et al (2010) Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells Dev 19:1895–1910PubMedCrossRefGoogle Scholar
  18. 18.
    Lovati AB, Corradetti B, Lange CA et al (2011) Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells. Vet Res Commun 35:103–121PubMedCrossRefGoogle Scholar
  19. 19.
    Warton T (1656) Adenographia: sive glandularum totius corporis descriptio. London: Wharton. pp 243–244Google Scholar
  20. 20.
    Weiss ML, Troyer DL (2006) Stem cells in the umbilical cord. Stem Cell Rev 2:155–162PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Karahuseyinoglu S, Kocaefe C, Balci D et al (2008) Functional structure of adipocytes differentiated from human umbilical cord stroma-derived stem cells. Stem Cells 26:682–691PubMedCrossRefGoogle Scholar
  22. 22.
    Sarugaser R, Lickorish D, Baksh D et al (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229PubMedCrossRefGoogle Scholar
  23. 23.
    Kita K, Gauglitz GG, Phan TT et al (2010) Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev 19:491–502PubMedCrossRefGoogle Scholar
  24. 24.
    Gotherstrom C, West A, Liden J et al (2005) Difference in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells. Haematologica 90:1017–1026PubMedGoogle Scholar
  25. 25.
    Prasanna SJ, Jahnavi VS (2011) Wharton’s Jelly Mesenchymal stem cells as off-the-shelf cellular therapeutics: a closer look into their regenerative and immunomodulatory properties. Open Tissue Eng Regen Med J 4:28–38CrossRefGoogle Scholar
  26. 26.
    Can A, Karahuseyinoglu S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 11:2886–2895CrossRefGoogle Scholar
  27. 27.
    McElreavey KD, Irvine AI, Ennis KT et al (1991) Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem Soc Trans 19:29SPubMedGoogle Scholar
  28. 28.
    Baudin B, Bruneel A, Bosselut N et al (2007) A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2:481–485PubMedCrossRefGoogle Scholar
  29. 29.
    Iacono E, Brunori L, Pirrone A et al (2012) Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton’s jelly in the horse. Reproduction 143:455–468PubMedCrossRefGoogle Scholar
  30. 30.
    Cardoso TC, Ferrari HF, Garcia AF et al (2012) Isolation and characterization of Wharton’s jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. BMC Biotechnol 12:18PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Weiss ML, Medicetty S, Bledsoe AR et al (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24:781–792PubMedCrossRefGoogle Scholar
  32. 32.
    Wagner W, Horn P, Castoldi M et al (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    European Medicines Agency. Reflection paper on stem cell-based medicinal products. 14 January 2011Google Scholar
  34. 34.
    Liras A (2010) Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. J Transl Med 8:131PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Chan RK, Zamora DO, Wrice NL et al (2012) Development of a vascularized skin construct using adipose-derived stem cells from debrided burned skin. Stem Cells Int. Article ID 841203. http://dx.doi.org/10.1155/2012/841203
  36. 36.
    Bruno I, Nazari-Shafti T, Martinez R, et al (2013) Rapid and efficient preparation of equine regenerative cells from umbilical cord matrix using a semi-automated process. 4th N. American Vet Regen Med Assoc, Atlanta, GA (Abstract)Google Scholar
  37. 37.
    Campard D, Lysy PA, Najimi M et al (2008) Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 134:833–848PubMedCrossRefGoogle Scholar
  38. 38.
    Wang HS, Hung SC, Peng ST et al (2004) Mesenchymal stem cells in Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337PubMedCrossRefGoogle Scholar
  39. 39.
    Bailey MM, Wang L, Bode CJ et al (2007) A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Eng 13:2003–2010PubMedCrossRefGoogle Scholar
  40. 40.
    Tsagias N, Koliakos I, Karagiannis V et al (2011) Isolation of mesenchymal stem cells using the total length of umbilical cord for transplantation purposes. Transfus Med 21:253–261PubMedCrossRefGoogle Scholar
  41. 41.
    Christodoulou I, Kolisis FN, Papaevangeliou D, et al (2013) Comparative evaluation of human mesenchymal stem cells of fetal (Whartons’s Jelly) and adult (Adipose Tissue) origin during prolonged in vitro expansion: considerations for cytotherapy. Stem Cells Int. Article ID 246134Google Scholar
  42. 42.
    Hua J, Gong J, Meng M et al (2014) Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow. Cell Biol Int 38:198–210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Timo Z. Nazari-Shafti
    • 1
  • Ivone G. Bruno
    • 2
  • Rudy F. Martinez
    • 2
  • Michael E. Coleman
    • 2
  • Eckhard U. Alt
    • 1
  • Scott R. McClure
    • 1
    • 3
  1. 1.Department of SurgeryTulane UniversityNew OrleansUSA
  2. 2.InGeneron, Inc.HoustonUSA
  3. 3.Department of Veterinary Clinical SciencesIowa State UniversityAmesUSA

Personalised recommendations