Advertisement

The Pyrosequencing Protocol for Bacterial Genomes

  • Ermanno RizziEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1231)

Abstract

The pyrosequencing methodology was applied in 2005 by 454 Lifesciences to the emerging field of next generation sequencing (NGS), revolutionizing the way of DNA sequencing. In the last years the same strategy grew up and was technologically updated, reaching a high throughput in terms of amount of generated sequences (reads) per run and in terms of length of sequence up to values of 800–1,000 bases. These features of pyrosequencing perfectly fit to bacterial genome sequencing for the de novo assemblies and resequencing as well. The approaches of shotgun and paired ends sequencing allow the bacterial genome finishing providing a high-quality data in few days with unprecedented results.

Key words

NGS Pyrosequencing Reads Bacterial genomes Paired ends 

Notes

Acknowledgements

The author acknowledges the two “FIRB-Futuro in Ricerca” grants from the Italian Minister of Education, Universities and Research (MIUR): RBFR08U07M and RBFR126B8I.

References

  1. 1.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben L et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedPubMedCentralGoogle Scholar
  2. 2.
    Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11CrossRefPubMedGoogle Scholar
  3. 3.
    Rizzi E, Lari M, Gigli E, De Bellis G, Caramelli D (2012) Ancient DNA studies: new perspectives on old samples. Genet Sel Evol 44(1):21–29CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Morozova O, Hirst M, Marra M (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151CrossRefPubMedGoogle Scholar
  5. 5.
    Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill F-X, Goodhead I, Rance R, Baker S, Maskell DJ, Wain J, Dolecek C, Achtman M, Dougan G (2008) High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 40:987–993CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Peano C, Bicciato S, Corti G, Ferrari F, Rizzi E, Bonnal RJ, Bordoni R, Albertini A, Bernardi LR, Donadio S, De Bellis G (2007) Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays. Microb Cell Fact 6:37–53CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Busam D, Feldblyum T, Ferriera S, Friedman R, Halpern A, Khouri H et al (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci U S A 103:11240–11245CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fondi M, Rizzi E, Emiliani G, Orlandini V, Berna L, Papaleo MC, Perrin E, Maida I, Corti G, De Bellis G, Baldi F, Dijkshoorn L, Vaneechoutte M, Fani R (2013) The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3. Res Microbiol 164:439–449CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.National Research Council (CNR)Institute for Biomedical Technologies (ITB)SegrateItaly

Personalised recommendations