Skip to main content

From Pangenome to Panphenome and Back

  • Protocol
Bacterial Pangenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1231))

Abstract

The ability to relate genomic differences in bacterial species to their variability in expressed phenotypes is one of the most challenging tasks in today’s biology. Such task is of paramount importance towards the understanding of biotechnologically relevant pathways and possibly for their manipulation. Fundamental prerequisites are the genome-wide reconstruction of metabolic pathways and a comprehensive measurement of cellular phenotypes. Cellular pathways can be reliably reconstructed using the KEGG database, while the OmniLog™ Phenotype Microarray (PM) technology may be used to measure nearly 2,000 growth conditions over time. However, few computational tools that can directly link PM data with the gene(s) of interest followed by the extraction of information on gene–phenotype correlation are available.

In this chapter the use of the DuctApe software suite is presented, which allows the joint analysis of bacterial genomic and phenomic data, highlighting those pathways and reactions most probably associated with phenotypic variability. A case study on four Sinorhizobium meliloti strains is presented; more example datasets are available online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayjanov JR, Molenaar D, Tzeneva V, Siezen RJ, van Hijum SA (2012) PhenoLink-a web-tool for linking phenotype to ~omics data for bacteria: application to gene-trait matching for Lactobacillus plantarum strains. BMC Genomics 13:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harper MA, Chen Z, Toy T et al (2011) Phenotype sequencing: identifying the genes that cause a phenotype directly from pooled sequencing of independent mutants. PLoS One 6:e16517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karr JR, Sanghvi JC, Macklin DN et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133

    Article  CAS  PubMed  Google Scholar 

  5. Caspi R, Foerster H, Fulcher CA et al (2008) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 36:D623–D631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Overbeek R, Begley T, Butler RM et al (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156:287–301

    Article  CAS  PubMed  Google Scholar 

  9. Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li JL, Li MX, Deng HY, Duffy P, Deng HW (2005) PhD: a web database application for phenotype data management. Bioinformatics 21:3443–3444

    Article  CAS  PubMed  Google Scholar 

  11. Chang W, Sarver K, Higgs B et al (2011) PheMaDB: a solution for storage, retrieval, and analysis of high throughput phenotype data. BMC Bioinformatics 12:109

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vaas LA, Sikorski J, Hofner B et al (2013) opm: an R package for analysing OmniLog® phenotype microarray data. Bioinformatics 29(14):1823–1824

    Article  CAS  PubMed  Google Scholar 

  13. Vaas LAI, Sikorski J, Michael V, Göker M, Klenk HP (2012) Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 7:e34846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Biondi EG, Tatti E, Comparini D et al (2009) Metabolic capacity of Sinorhizobium (Ensifer) meliloti strains as determined by phenotype microarray analysis. Appl Environ Microbiol 75:5396–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Henry CS, DeJongh M, Best AA et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  CAS  PubMed  Google Scholar 

  16. Peleg AY, de Breij A, Adams MD et al (2012) The success of Acinetobacter species; genetic, metabolic and virulence attributes. PLoS One 7:e46984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Viti C, Decorosi F, Mini A, Tatti E, Giovannetti L (2009) Involvement of the oscA gene in the sulphur starvation response and in Cr(VI) resistance in Pseudomonas corrugata 28. Microbiology 155:95–105

    Article  CAS  PubMed  Google Scholar 

  18. Reed JL, Famili I, Thiele I, Palsson BO (2006) Towards multidimensional genome annotation. Nat Rev Genet 7:130–141

    Article  CAS  PubMed  Google Scholar 

  19. Galardini M, Mengoni A, Biondi EG et al (2014) DuctApe: a suite for the analysis and correlation of genomic and OmniLog™ phenotype microarray data. Genomics 103:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway recon-struction server. Nucleic Acids Res 35:W182–W185

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Galardini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Galardini, M., Mengoni, A., Mocali, S. (2015). From Pangenome to Panphenome and Back. In: Mengoni, A., Galardini, M., Fondi, M. (eds) Bacterial Pangenomics. Methods in Molecular Biology, vol 1231. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1720-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1720-4_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1719-8

  • Online ISBN: 978-1-4939-1720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics