Synthesis of Sulfur Isotope-Labeled Sulfate Donor, 3′-Phosphoadenosine-5′-Phosphosulfate, for Studying Glycosaminoglycan Functions

  • Caitlin Mencio
  • Vimal P. Swarup
  • Marcus Soliai
  • Balagurunathan KuberanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)


The biological activity of glycosaminoglycans (GAGs) depends greatly on the sulfation pattern present within the GAG chain. Chemical biology of GAGs can be further advanced by preparation of sulfur-isotope-enriched sulfated GAGs. 3′-Phosphoadenosine-5′-phosphosulfate (PAPS) serves as a universal sulfate donor in the sulfation of GAGs by sulfotransferases. Therefore, synthesis of PAPS carrying sulfur isotopes is critical in the preparation of labeled GAGs for biochemical studies. Here we describe a robust in vitro enzymatic synthesis of sulfur isotope-enriched PAPS which allows for heavy- or radio-isotope labeling of GAG chains.

Key words

PAPS APS kinase Sulfurylase PAPS synthase Radioactive sulfate Glycosaminoglycans 



This work was supported in part by NIH grants (P01HL107152 and R01GM075168) to B.K.


  1. 1.
    Pan J, Qian Y, Zhou X et al (2010) Chemically oversulfated glycosaminoglycans are potent modulators of contact system activation and different cell signaling pathways. J Biol Chem 285(30):22966–22975PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Lindahl U, Backstrom G, Thunberg L, Leder I (1980) Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc Natl Acad Sci U S A 77(11):6551–6555PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Burkart T, Wiesmann U (1987) Sulfated glycosaminoglycans (GAG) in the developing mouse brain. Quantitative aspects on the metabolism of total and individual sulfated GAG in vivo. Dev Biol 120(2):447–456PubMedCrossRefGoogle Scholar
  4. 4.
    Gay S, Fribourgh J, Donohoue P et al (2009) Kinetic properties of ATP sulfurylase and APS kinase from Thiobacillus denitrificans. Arch Biochem Biophys 489:110–117PubMedCrossRefGoogle Scholar
  5. 5.
    Yu Z, Lemongello D, Segel I, Fisher A (2008) Crystal structure of saccharomyces cerevisiae 3’-phosphoadenosine-5’-phosphosulfate reductase complexed with adenosine 3’, 5’-bisphosphate. Biochemistry 47(48):12777–127786PubMedCrossRefGoogle Scholar
  6. 6.
    Segel I, Renosto F, Seubert P (1987) Sulfate-activating enzymes. In: Jakoby W, Griffith O (eds) Methods in enzymology, vol 143. Academic, New YorkGoogle Scholar
  7. 7.
    Sugahara K, Schwartz N (1979) Defect in 3’-phosphoadenosine 5’-phosphosulfate formation in brachymorphic mice. Proc Natl Acad Sci U S A 76(12):6615–6618PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Deyrup A, Krishnan S, Singh B, Schwartz N (1999) Activity and stability of recombinant bifunctional rearranged and monofunctional domains of ATP-sulfurylase and adenosine 5’-phosphosulfate kinase. J Biol Chem 274(16):10751–10757PubMedCrossRefGoogle Scholar
  9. 9.
    Venkatachslam K, Akita H, Strott C (1998) Molecular cloning, expression and characterization of human bifunctional 3’-phosphoadenosine 5’-phosphosulfate synthase and its functional domains. J Biol Chem 273(30):19311–19320CrossRefGoogle Scholar
  10. 10.
    Satishchandran C, Markham G (1989) Adenosine-5’-phosphosulfate kinase from Escherichia coli K12. Purification, characterization and identification of a phosphorylated enzyme intermediate. J Biol Chem 264(25):15012–15021PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Caitlin Mencio
    • 1
  • Vimal P. Swarup
    • 2
    • 3
  • Marcus Soliai
    • 2
  • Balagurunathan Kuberan
    • 1
    • 2
    • 3
    Email author
  1. 1.Interdepartmental Program in NeuroscienceUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Medicinal ChemistryUniversity of UtahSalt Lake CityUSA
  3. 3.Department of BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations